Through neutron diffraction experiments, including spin-polarized measurements, we find a collinear incommensurate spin-density wave with propagation vector k = (0.4481(4) 0 1 2 ) at base temperature in the superconducting parent compound Fe1+xTe. This critical concentration of interstitial iron corresponds to x ≈ 12% and leads crystallographic phase separation at base temperature. The spin-density wave is short-range ordered with a correlation length of 22(3)Å, and as the ordering temperature is approached its propagation vector decreases linearly in the H-direction and becomes long-range ordered. Upon further populating the interstitial iron site, the spin-density wave gives way to an incommensurate helical ordering with propagation vector k = (0.3855(2) 0 1 2 ) at base temperature. For a sample with x ≈ 9(1)%, we also find an incommensurate spin-density wave that competes with the bicollinear commensurate ordering close to the Néel point. The shifting of spectral weight between competing magnetic orderings observed in several samples is supporting evidence for the phase separation being electronic in nature, and hence leads to crystallographic phase separation around the critical interstitial iron concentration of 12%. With results from both powder and single crystal samples, we construct a magnetic-crystallographic phase diagram of Fe1+xTe for 5% < x < 17%.
Magnetic nanoparticles provide a unique combination of small size and responsiveness to magnetic fields making them attractive for applications in electronics, biology, and medicine. When exposed to alternating magnetic fields, magnetic nanoparticles can generate heat through loss power mechanisms that continue to challenge a complete physical description. The influence of internal nanoparticle (intracore) magnetic domain structure on relaxation remains unexplored. Within the context of potential biomedical applications, this study focuses on the dramatic differences observed among the specific loss power of three magnetic iron oxide nanoparticle constructs having comparable size and chemical composition. Analysis of polarization analyzed small angle neutron scattering data reveals unexpected and complex coupling among magnetic domains within the nanoparticle cores that influences their interactions with external magnetic fields. These results challenge the prevailing concepts in hyperthermia which limit consideration to size and shape of magnetic single domain nanoparticles.
A new development in small-angle neutron scattering with polarization analysis allows us to directly extract the average spatial distributions of magnetic moments and their correlations with threedimensional directional sensitivity in any magnetic field. Applied to a collection of spherical magnetite nanoparticles 9.0 nm in diameter, this enhanced method reveals uniformly canted, magnetically active shells in a nominally saturating field of 1.2 T. The shell thickness depends on temperature, and it disappears altogether when the external field is removed, confirming that these canted nanoparticle shells are magnetic, rather than structural, in origin.
Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.