Application of hydrophobic coatings, such as carnauba wax nanoemulsions, combined with natural antimicrobials, has been demonstrated to be an effective solution in extending the shelf life of fruits. The present study evaluated the effectiveness of carnauba wax nanoemulsion (CWN) coatings containing free or encapsulated with β-cyclodextrin (β-CD) essential oils of Syzigium aromaticum (CEO) and Mentha spicata (MEO) for the post-harvest conservation of papaya fruit. The chemical composition of the essential oils (EOs) was analyzed using GC-MS. Subsequently, coatings incorporating free and encapsulated EOs were prepared and applied to papaya fruit. Fruit was evaluated for post-harvest quality parameters during 15 days of storage. Clove essential oil presented as main compounds eugenol (89.73%), spearmint and carvone (68.88%), and limonene (20.34%). The observed reduction in weight loss in coated fruit can be attributed to the formation of a physical barrier provided by the coating. Compared to the control group, which experienced the highest weight loss of 24.85%, fruit coated with CWN and CWN-MEO:β-CD exhibited significantly lower weight loss percentages of only 5.78% and 7.5%, respectively. Compared to the control group, which exhibited a release of ethylene at a rate of 1.3 µg kg−1 h−1, fruit coated with CWN, CWN-MEO:β-CD, and CWN-MEO coatings demonstrated a lower ethylene release rate at 0.7 µg kg−1 h−1. Although the physical-chemical properties of papayas, including pH, Brix, titratable acidity, color, and texture, remained largely unchanged during storage with the coatings, analysis of incidence and severity of papaya post-harvest deterioration revealed that coatings containing essential oils effectively acted as antifungals in the fruit. Microscopy images showed that CWN and CWN-MEO:β-CD coatings are more uniform compared to the others. The edible coatings, especially CWN and CWN-MEO: β-CD, can act as antimicrobial coatings on papaya fruit, increasing their conservation during post-harvest storage.
In this study, a potential hard tissue substitute was mimicked using collagen/mangosteen porous scaffolds. Collagen was extracted from Tilapia fish skin and mangosteen from the waste peel of the respective fruit. Sodium trimetaphosphate was used for the phosphorylation of these scaffolds to improve the nucleation sites for the mineralization process. Phosphate groups were incorporated in the collagen structure as confirmed by their attenuated total reflection Fourier transform infrared (ATR-FTIR) bands. The phosphorylation and mangosteen addition increased the thermal stability of the collagen triple helix structure, as demonstrated by differential scanning calorimetry (DSC) and thermogravimetry (TGA) characterizations. Mineralization was successfully achieved, and the presence of calcium phosphate was visualized by scanning electron microscopy (SEM). Nevertheless, the porous structure was maintained, which is an essential characteristic for the desired application. The deposited mineral was amorphous calcium phosphate, as confirmed by energy dispersive X-ray spectroscopy (EDX) results.
A proper valorization of biological waste sources for an effective conversion into composites for tissue engineering is discussed in this study. Hence, the collagen and the phenolic compound applied in this investigation were extracted from waste sources, respectively, fish industry rejects and the peels of the mangosteen fruit. Porous scaffolds were prepared by combining both components at different compositions and mineralized at different temperatures to evaluate the modifications in the biomimetic formation of apatite. The inclusion of mangosteen extract showed the advantage of increasing the collagen denaturation temperature, improving the stability of its triple helix. Moreover, the extract provided antioxidant activity due to its phenolic composition, as confirmed by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assays. Mineralization was successfully achieved as indicated by thermogravimetry and scanning electron microscopy. A higher temperature and a lower extract concentration reduced the calcium phosphate deposits. The extract also affected the pore size, particularly at a lower concentration. The X-ray diffraction pattern identified a low degree of crystallization. A high mineralization temperature induced the formation of smaller crystallites ranging from 18.9 to 25.4 nm. Although the deposited hydroxyapatite showed low crystallinity, the scaffolds are suitable for bone tissue applications and may be effective in controlling the resorbability rate in tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.