Affine projection (AP) algorithms have been demonstrated to have faster convergence speeds than the conventional least mean square (LMS) algorithms. However, LMS algorithms exhibit smaller steady-state mean square errors (MSEs) when compared with affine projection (AP) algorithms. Recently, several authors have proposed alternative methods based on convex combinations to improve the steady-state MSE of AP algorithms, even with the increased computational cost from the simultaneous use of two filters. In this paper, we present an alternative method based on an affine projection-like (APL-I) algorithm and least mean square (LMS) algorithm to solve the ANC under stationary Gaussian noise environments. In particular, we propose a switching filter selection criteria to improve the steady-state MSE without increasing the computational cost when compared with existing models. Here, we validate the proposed strategy in a single and a multichannel system, with and without automatically adjusting the scaling factor of the APL-I algorithm. The results demonstrate that the proposed scheme exploits the best features of each filter (APL-I and LMS) to guarantee rapid convergence with a low steady-state MSE. Additionally, the proposed approach demands a low computational burden compared with existing convex combination approaches, which will potentially lead to the development of real-time ANC applications.
Recently, the use of acoustic echo canceller (AEC) systems in portable devices has significantly increased. Therefore, the need for superior audio quality in resource-constrained devices opens new horizons in the creation of high-convergence speed adaptive algorithms and optimal digital designs. Nowadays, AEC systems mainly use the least mean square (LMS) algorithm, since its implementation in digital hardware architectures demands low area consumption. However, its performance in acoustic echo cancellation is limited. In addition, this algorithm presents local convergence optimization problems. Recently, new approaches, based on stochastic optimization algorithms, have emerged to increase the probability of encountering the global minimum. However, the simulation of these algorithms requires high-performance computational systems. As a consequence, these algorithms have only been conceived as theoretical approaches. Therefore, the creation of a low-complexity algorithm potentially allows the development of compact AEC hardware architectures. In this paper, we propose a new convex combination, based on grey wolf optimization and LMS algorithms, to save area and achieve high convergence speed by exploiting to the maximum the best features of each algorithm. In addition, the proposed convex combination algorithm shows superior tracking capabilities when compared with existing approaches. Furthermore, we present a new neuromorphic hardware architecture to simulate the proposed convex combination. Specifically, we present a customized time-multiplexing control scheme to dynamically vary the number of search agents. To demonstrate the high computational capabilities of this architecture, we performed exhaustive testing. In this way, we proved that it can be used in real-world acoustic echo cancellation scenarios.
Presently, the technology development trend of active noise control (ANC) systems is focused on implementing advanced adaptive filters in resource-constrained electronic appliances. Recently, several authors have proved that the use of two adaptive filter algorithms significantly improves the overall adaptive filter performance. However, the computational cost of these approaches is significantly increased since they use two filters simultaneously. Consequently, these filters cannot be implemented in these devices. To solve this problem, we propose a new ANC structure with switching selection based on filtered-x normalized least mean square (FxNLMS) and filtered-x sign least mean square (FxSLMS) algorithms to reduce the computational cost of the ANC system. The improvement of this factor has allowed us to introduce for the first time an advanced spike-based architecture, which can perform dual filter operations using dynamic routing, to be used in real ANC applications. The results have demonstrated that the computational cost of the proposed dual D-FxNLMS/SLMS algorithm is lower compared with previously reported solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.