With the growing popularity of cryptocurrencies, which are an important part of day-to-day transactions over the Internet, the interest in being part of the so-called cryptomining service has attracted the attention of investors who wish to quickly earn profits by computing powerful transactional records towards the blockchain network. Since most users cannot afford the cost of specialized or standardized hardware for mining purposes, new techniques have been developed to make the latter easier, minimizing the computational cost required. Developers of large cryptocurrency houses have made available executable binaries and mainly browser-side scripts in order to authoritatively tap into users’ collective resources and effectively complete the calculation of puzzles to complete a proof of work. However, malicious actors have taken advantage of this capability to insert malicious scripts and illegally mine data without the user’s knowledge. This cyber-attack, also known as cryptojacking, is stealthy and difficult to analyze, whereby, solutions based on anti-malware extensions, blocklists, JavaScript disabling, among others, are not sufficient for accurate detection, creating a gap in multi-layer security mechanisms. Although in the state-of-the-art there are alternative solutions, mainly using machine learning techniques, one of the important issues to be solved is still the correct characterization of network and host samples, in the face of the increasing escalation of new tampering or obfuscation techniques. This paper develops a method that performs a fingerprinting technique to detect possible malicious sites, which are then characterized by an autoencoding algorithm that preserves the best information of the infection traces, thus, maximizing the classification power by means of a deep dense neural network.
Affine projection (AP) algorithms are commonly used to implement active noise control (ANC) systems because they provide fast convergence. However, their high computational complexity can restrict their use in certain practical applications. The Error Coded Affine Projection-Like (ECAP-L) algorithm has been proposed to reduce the computational burden while maintaining the speed of AP, but no version of this algorithm has been derived for active noise control, for which the adaptive structures are very different from those of other configurations. In this paper, we introduce a version of the ECAP-L for single-channel and multichannel ANC systems. The proposed algorithm is implemented using the conventional filtered-x scheme, which incurs a lower computational cost than the modified filtered-x structure, especially for multichannel systems. Furthermore, we present an evolutionary method that dynamically decreases the projection order in order to reduce the dimensions of the matrix used in the algorithm's computations. Experimental results demonstrate that the proposed algorithm yields a convergence speed and a final residual error similar to those of AP algorithms. Moreover, it achieves meaningful computational savings, leading to simpler hardware implementation of real-time ANC applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.