Life-long visual localization is one of the most challenging topics in robotics over the last few years. The difficulty of this task is in the strong appearance changes that a place suffers due to dynamic elements, illumination, weather or seasons. In this paper, we propose a novel method (ABLE-M) to cope with the main problems of carrying out a robust visual topological localization along time. The novelty of our approach resides in the description of sequences of monocular images as binary codes, which are extracted from a global LDB descriptor and efficiently matched using FLANN for fast nearest neighbor search. Besides, an illumination invariant technique is applied. The usage of the proposed binary description and matching method provides a reduction of memory and computational costs, which is necessary for long-term performance. Our proposal is evaluated in different life-long navigation scenarios, where ABLE-M outperforms some of the main state-of-the-art algorithms, such as WI-SURF, BRIEF-Gist, FAB-MAP or SeqSLAM. Tests are presented for four public datasets where a same route is traversed at different times of day or night, along the months or across all four seasons.
Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.