Abstract-This paper presents a nonintrusive prototype computer vision system for monitoring a driver's vigilance in real time. It is based on a hardware system for the real-time acquisition of a driver's images using an active IR illuminator and the software implementation for monitoring some visual behaviors that characterize a driver's level of vigilance. Six parameters are calculated: Percent eye closure (PERCLOS), eye closure duration, blink frequency, nodding frequency, face position, and fixed gaze. These parameters are combined using a fuzzy classifier to infer the level of inattentiveness of the driver. The use of multiple visual parameters and the fusion of these parameters yield a more robust and accurate inattention characterization than by using a single parameter. The system has been tested with different sequences recorded in night and day driving conditions in a motorway and with different users. Some experimental results and conclusions about the performance of the system are presented.Index Terms-Driver vigilance, eyelid movement, face position, fuzzy classifier, percent eye closure (PERCLOS), visual fatigue behaviors.
Abstract-This paper presents a nonintrusive prototype computer vision system for monitoring a driver's vigilance in real time. It is based on a hardware system for the real-time acquisition of a driver's images using an active IR illuminator and the software implementation for monitoring some visual behaviors that characterize a driver's level of vigilance. Six parameters are calculated: Percent eye closure (PERCLOS), eye closure duration, blink frequency, nodding frequency, face position, and fixed gaze. These parameters are combined using a fuzzy classifier to infer the level of inattentiveness of the driver. The use of multiple visual parameters and the fusion of these parameters yield a more robust and accurate inattention characterization than by using a single parameter. The system has been tested with different sequences recorded in night and day driving conditions in a motorway and with different users. Some experimental results and conclusions about the performance of the system are presented.Index Terms-Driver vigilance, eyelid movement, face position, fuzzy classifier, percent eye closure (PERCLOS), visual fatigue behaviors.
Abstract-This paper presents a nonintrusive prototype computer vision system for monitoring a driver's vigilance in real time. It is based on a hardware system for the real-time acquisition of a driver's images using an active IR illuminator and the software implementation for monitoring some visual behaviors that characterize a driver's level of vigilance. Six parameters are calculated: Percent eye closure (PERCLOS), eye closure duration, blink frequency, nodding frequency, face position, and fixed gaze. These parameters are combined using a fuzzy classifier to infer the level of inattentiveness of the driver. The use of multiple visual parameters and the fusion of these parameters yield a more robust and accurate inattention characterization than by using a single parameter. The system has been tested with different sequences recorded in night and day driving conditions in a motorway and with different users. Some experimental results and conclusions about the performance of the system are presented.Index Terms-Driver vigilance, eyelid movement, face position, fuzzy classifier, percent eye closure (PERCLOS), visual fatigue behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.