A new method is described employing small drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. Previous studies have shown that accurate surface current measurements using HF radar require APMs. The APMs provide directional calibration of the receive antennas for direction-finding radars. In the absence of APMs, so-called ideal antenna patterns are assumed and these can differ substantially from measured patterns. Typically, APMs are obtained using small research vessels carrying radio signal sources or transponders in circular arcs around individual radar sites. This procedure is expensive because it requires seagoing technicians, a vessel, and other equipment necessary to support small-boat operations. Furthermore, adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, it is shown that drone aircraft can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward, since they are not affected by the surfzone, and thereby expand the range of bearings over which APMs are determined. This simplified process for obtaining APMs can lead to more frequent calibrations and improved surface current measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.