Direct visualization of metabolic dynamics in living animals with high spatial and temporal resolution is essential to understanding many biological processes. Here we introduce a platform that combines deuterium oxide (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy to image in situ metabolic activities. Enzymatic incorporation of D2O-derived deuterium into macromolecules generates carbon–deuterium (C–D) bonds, which track biosynthesis in tissues and can be imaged by SRS in situ. Within the broad vibrational spectra of C–D bonds, we discover lipid-, protein-, and DNA-specific Raman shifts and develop spectral unmixing methods to obtain C–D signals with macromolecular selectivity. DO-SRS microscopy enables us to probe de novo lipogenesis in animals, image protein biosynthesis without tissue bias, and simultaneously visualize lipid and protein metabolism and reveal their different dynamics. DO-SRS microscopy, being noninvasive, universally applicable, and cost-effective, can be adapted to a broad range of biological systems to study development, tissue homeostasis, aging, and tumor heterogeneity.
Ge-rich islands have been grown on Si (100) substrates by molecular beam epitaxy. Their density and size distribution are analysed by atomic force microscopy as a function of growth temperature, growth rate and Ge coverage. Overgrown islands have been studied by transmission electron microscopy, Raman scattering and photoluminescence. The first results of photocurrent spectroscopy on Si/Ge/Si pin diodes show the expected shift of the energy gap. Based on these results, novel device applications of Ge-rich islands in Si are proposed.
The emission of light in the blue-green region from cubic InxGa1-xN alloys grown by molecular beam epitaxy is observed at room temperature and 30 K. By using selective resonant Raman spectroscopy (RRS) we demonstrate that the emission is due to quantum confinement effects taking place in phase-separated In-rich quantum dots formed in the layers. RRS data show that the In content of the dots fluctuates across the volume of the layers. We find that dot size and alloy fluctuation determine the emission wavelengths.
Free and bound exciton fine structures in AlN epilayers grown by low-pressure metalorganic vapor phase epitaxyCathodoluminescence experiments were performed on a high-quality AlN epitaxial film grown by organometallic vapor phase epitaxy on a large single crystal AlN substrate. The low-temperature near-bandedge spectra clearly show six very narrow lines. The thermal quenching behavior of these emission lines provides insight on how to assign them to free and bound exciton recombination processes. The binding energy for the free-exciton-A in AlN was found to be nearly twice that in GaN. The observation of the free-exciton-A first excited state permitted us to estimate its reduced effective mass and, by using recent reported values for the hole effective mass in Mg-doped AlN, the electron effective mass in AlN has been deduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.