Eucalyptus globulus wood was subjected to autohydrolysis pretreatment at different severity factors. The pretreated materials were enzymatically saccharified at a substrate load of 10% (w/v) using a cellulase enzyme complex. Around 82-95% of original glucans were retained in the pretreated material, and the enzymatic hydrolysis yields ranged from 58% to 90%. The chemical and structural changes in the pretreated materials were investigated by microscopic (SEM, LSCM) and spectroscopic (2D-HSQC NMR and FT-IR) techniques. 2D-NMR results showed a reduction in the amounts of β-O-4 aryl-ether linkages and suggested the presence of newly condensed structures of lignin in the biomass pretreated at the more severe conditions. Furthermore, the microscopic analysis showed that lignin migrates out of the cell wall and re-deposits in certain regions of the fibers at the more severe conditions to form droplet-like structures and expose the cellulose surface. These changes improved the glucose yield up to 69%, on dry wood basis.
In order to understand the relation between chemical composition, microscopic structure and enzymatic digestibility, different Eucalyptus globulus wood pretreated samples were examined. Pretreated materials obtained by steam explosion and autohydrolysis were compared with those obtained by organosolv and kraft processes. Chemical analyses of pretreated materials showed a decrease in the content of xylans, except in the kraft pulp. FT-IR spectra showed that the residual lignin in autohydrolysis pulp had experienced greater changes compared to those in steam explosion and organosolv pulps, whereas minor changes in lignin kraft pulp were observed. The fiber morphology indicated that autohydrolysis pretreatment was the most aggressive treatment. Reduction in the content of lignin and its redistribution on the fiber wall were confirmed through confocal laser microscopy. The formation of discrete lignin droplets deposited on the surface of the fibers was observed in all pretreatments, with a higher frequency in organosolv followed by steam explosion. A significant increase in enzymatic accessibility was achieved in organosolv, autohydrolysis and steam explosion pulps, due to xylans removal combined with lignin redistribution. Homogeneous lignin distribution and higher xylan content may be related to the low enzymatic hydrolysis efficiency in kraft pulp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.