The design and fabrication of a miniature fiber Fabry-Perot pressure sensor with a diameter of 125 microm are presented. The essential element in the process is a thin SiO2 diaphragm that is fusion spliced at the hollow end of an optical fiber. Good repeatability and high sensitivity of the sensor are achieved by on-line tuning of the diaphragm thickness during the sensor fabrication process. Various sensor prototypes were fabricated, demonstrating pressure ranges of from 0 to 40 kPa to 0 to 1 MPa. The maximum achieved sensitivity was 1.1 rad/40 kPa at 1550 nm, and a pressure resolution of 300 Pa was demonstrated in practice. The presented design and fabrication technique offers a means of simple and low-cost disposable pressure sensor production.
The fabrication and experimental investigation of a miniature optical fiber pressure sensor for biomedical and industrial applications are described. The sensor measures only 125 microm in diameter. The essential element is a thin polymer diaphragm that is positioned inside the hollow end of an optical fiber. The cavity at the fiber end is made by a simple and effective micromachining process based on wet etching in diluted HF acid. Thus a Fabry-Perot interferometer is formed between the inner fiber-cavity interface and the diaphragm. The fabrication technique is described in detail. Different sensor prototypes were fabricated upon 125 microm-diameter optical fiber that demonstrated pressure ranges from 0 to 40 and from 0 to 1200 kPa. A resolution of less than 10 Pa was demonstrated in practice. The fabrication technique presented facilitates production of simple and low-cost disposable pressure sensors by use of materials with that ensure the required biocompatibility.
This paper describes a newly designed all-glass miniature (Ø 125 microm) fiber-optic pressure sensor design that is appropriate for high-volume manufacturing. The fabrication process is based on the chemical etching of specially-designed silica optical fiber, and involves a low number of critical production operations. The presented sensor design can be used with either single-mode or multi-mode lead-in fiber and is compatible with various types of available signal processing techniques. A practical sensor sensitivity exceeding 1000 nm/bar was achieved experimentally, which makes this sensor suitable for low-pressure measurements. The sensor showed high mechanical stability, good quality of optical surfaces, and very high tolerance to pressure overload.
This paper presents an in-line, short cavity Fabry-Perot fiber optic strain sensor. A short air cavity inside a single-mode fiber is created by the fusion splicing of appropriately micro machined fiber tips. A precise tuning of the cavity length is introduced and used for the setting of the sensor static characteristics within the quasi-linear range around a quadrature point, which significantly simplifies signal processing. Sensor insertion losses achieved by short cavity design and optimized fusion splicing proved to be below 1 dB. Low insertion loss allows for effective cascading of the proposed strain sensors into a quasi-distributed sensor array. A practical 10-point quasi-distributed strain sensor array was demonstrated in practice, where each in-line sensor was tuned to the same operating point in the static characteristics, thus allowing for simple interrogation of the sensor array by using standard telecommunication OTDR. In addition, precise tuning of the short cavity Fabry Perot sensor was applied for an effective compensation of temperature-induced strain errors and for an increase in the unambiguous measuring range, while improving the overall linearity of the sensor system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.