Inflammatory bowel disease is a common name for Crohn’s disease and ulcerative colitis. These inflammatory states cause damage in the sidewalls of the gastrointestinal tract, resulting in malabsorption of food and vitamins. Folic acid (Vitamin B9) is often associated with inflammatory bowel diseases since reduced overall folate concentration in the human body may lead to the development of colorectal cancer and megaloblastic anaemia. However, its deficiency is easily compensated by taking an additional folic acid pill during regular therapy. At the moment, there are no studies that have examined the compatibility of folic acid with 5-aminosalicylate drugs used in the treatment of inflammatory bowel diseases. In this work, differential scanning calorimetry, forced degradation studies, isothermal stress testing and dissolution stability testing were used to determine the stability of folic acid and one of the most commonly used 5-aminosalicylates, mesalazine, when present in the same solution or blend. To monitor the assay of folic acid, mesalazine and nine of its related impurities, a single HPLC method was developed. Results of compatibility studies showed that no physicochemical interaction between mesalazine and folic acid occurs when combined, opening the path to the development of new formulations, such as a mesalazine/folic acid fixed-dose combination.
The simultaneous administration of sulfasalazine and folic acid is regular practice in the therapy of inflammatory bowel diseases in order to maintain sufficient folate concentration in patients. Having multiple drugs in the therapy increases the possibility of patients failing adherence, thus unintentionally endangering their health. A fixed-dose combination of sulfasalazine and folic would simplify the classical polytherapeutic approach; however, the physicochemical compatibility investigation of two active pharmaceutical ingredients plays an important role in the development of such a product. In this work, various analytical tools were used to determine the physicochemical compatibility of sulfasalazine and folic acid. For the evaluation of chemical compatibility, infrared spectroscopy in combination with advanced statistical methods, such as the principal component analysis and cluster analysis, were used, whilst a simultaneous thermogravimetry/differential thermal analysis gave us an insight into the physical compatibility of two drugs. Isothermal stress testing, forced degradation and dissolution studies, followed by the analysis with a developed chromatographic method for the monitoring of folic acid, sulfasalazine and two of its related impurities, sulfapyridine and salicylic acid, gave us an insight into its chemical compatibility. The combination of the results obtained from the used techniques implies a satisfactory physicochemical compatibility between sulfasalazine and folic acid, which opens the path to the development of the proposed fixed-dose combination.
With the increase in the number of medicines patients have to take, there has been a rapid rise of fixed-dose combinations (FDCs) in the last two decades. Prior to FDC development, pharmacokinetic properties of active pharmaceutical ingredients (APIs) have to be evaluated, as well as methods for their determination developed. So as to increase patient compliance in inflammatory bowel disease, three novel FDCs of thiopurine immunosuppressants and folic acid are proposed; physico-chemical and pharmacokinetic properties such as hydrophobicity, lipophilicity and plasma protein binding of all APIs are evaluated. Moreover, experimental results of different properties are compared to those computed by various on-line prediction platforms so as to evaluate the viability of the in silico approach. A simultaneous method for their determination is developed, optimized, validated and applied to commercial tablet formulations. The method has shown to be fast, selective, accurate and precise, showing potential for reliable determination of API content in proposed FDCs during its development.
Medication adherence is an important factor in inflammatory bowel disease therapy, which includes regular supplementation of malabsorbed vitamins. Absorption of folic acid is limited due to the damaging of the gastrointestinal tract, which can increase the chances to develop megaloblastic anaemia and colorectal cancer. In this work, 5-aminosalicylates (mesalazine, balsalazide, sulfasalazine and olsalazine) and folic acid were characterized regarding their pharmacokinetic related properties (hydrophobicity, phospholipid and plasma protein binding) using the biomimetic chromatographic approach. Despite the high binding percentage of 5-aminosalicylates for human serum albumin (> 61.44%), results have shown that folic acid binding to human serum albumin protein is far greater (69.40%) compared to α1-acid-glycoprotein (3.45%). Frontal analysis and zonal elution studies were conducted to provide an insight into the binding of folic acid to human serum albumin and potential competition with 5-aminosalicylates. The analytical method for the simultaneous determination of assay in proposed fixed-dose combinations was developed and validated according to ICH Q2 (R1) and FDA method validation guidelines. Separation of all compounds was achieved within 16 min with satisfactory resolution (Rs > 3.67) using the XBridge Phenyl column (150 × 4.6 mm, 3.5 µm). High linearity (r > 0.9997) and precision (RSD < 2.29%) was obtained, whilst all recoveries were within the regulatory defined range by British (100.0 ± 5.0%) and United States Pharmacopeia (100.0 ± 10.0%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.