Controlled immune responses to infection and injury involve complex molecular signaling networks with coordinated and often opposing actions. Eicosanoids and related bioactive lipid mediators derived from polyunsaturated fatty acids constitute a major bioactive lipid network, which is among the most complex and challenging pathways to map in a physiological context. Eicosanoid signaling, similar to cytokine signaling and inflammasome formation, has been viewed as primarily a pro-inflammatory component of the innate immune response; however, recent advances in lipidomics have helped to elucidate unique eicosanoids and related docosanoids with anti-inflammatory and pro-resolution functions. This has advanced our overall understanding of the inflammatory response and its therapeutic implications. The induction of a pro- and anti-inflammatory eicosanoid storm through the activation of inflammatory receptors by infectious agents is reviewed.
In 2005, the International Lipid Classification and Nomenclature Committee under the sponsorship of the LIPID MAPS Consortium developed and established a "Comprehensive Classification System for Lipids" based on well-defined chemical and biochemical principles and using an ontology that is extensible, flexible, and scalable. This classification system, which is compatible with contemporary databasing and informatics needs, has now been accepted internationally and widely adopted. In response to considerable attention and requests from lipid researchers from around the globe and in a variety of fields, the comprehensive classification system has undergone significant revisions over the last few years to more fully represent lipid structures from a wider variety of sources and to provide additional levels of detail as necessary. The details of this classification system are reviewed and updated and are presented here, along with revisions to its suggested nomenclature and structure-drawing recommendations for lipids.-Fahy,
In this era of genomics, transcriptomics, and proteomics, metabolomics is emerging as an important component of the omics evolution ( 1 ). Of the four kinds of biological molecules that comprise the human body, i.e., nucleic acids, amino acids (proteins), carbohydrates (sugars), and lipids (fats), lipids stand out among the various cellular metabolites in the sheer number of distinct molecular species. Using state-of-the-art lipidomics approaches made possible by newly developed instrumentation, protocols, and bioinformatics tools ( 2 ), the LIPID MAPS Consortium Abstract The focus of the present study was to defi ne the human plasma lipidome and to establish novel analytical methodologies to quantify the large spectrum of plasma lipids. Partial lipid analysis is now a regular part of every patient's blood test and physicians readily and regularly prescribe drugs that alter the levels of major plasma lipids such as cholesterol and triglycerides. Plasma contains many thousands of distinct lipid molecular species that fall into six main categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. The physiological contributions of these diverse lipids and how their levels change in response to therapy remain largely unknown. As a fi rst step toward answering these questions, we provide herein an in-depth lipidomics analysis of a pooled human plasma obtained from healthy individuals after overnight fasting and with a gender balance and an ethnic distribution that is representative of the US population. In total, we quantitatively assessed the levels of over 500 distinct molecular species distributed among the main lipid categories. As more information is obtained regarding the roles of individual lipids in health and disease, it seems likely that future blood tests will include an ever increasing number of these lipid molecules. -Quehenberger, O., A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.