In many industrial environments, systems are required to perform a sequence of operations (or missions) with finite breaks between each operation. During these breaks, it may be advantageous to perform repair on some of the system’s components. However, it may be impossible to perform all desirable maintenance activities prior to the beginning of the next mission due to limitations on maintenance resources. In this paper, a mathematical programming framework is established for assisting decision‐makers in determining the optimal subset of maintenance activities to perform prior to beginning the next mission. This decision‐making process is referred to as selective maintenance. The selective maintenance models presented allow the decision‐maker to consider limitations on maintenance time and budget, as well as the reliability of the system. Selective maintenance is an open research area that is consistent with the modern industrial objective of performing more intelligent and efficient maintenance.
In this paper, we present a two-stage mixed integer programming (MIP) interdiction model in which an interdictor chooses a limited amount of elements to attack first on a given network, and then an operator dispatches trains through the residual network. Our MIP model explicitly incorporates discrete unit flows of trains on the rail network with time-variant capacities. A real coal rail transportation network is used in order to generate scenarios to provide tactical and operational level vulnerability assessment analysis including rerouting decisions, travel and delay costs analysis, and the frequency of interdictions of facilities for the dynamic rail system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.