GaN-on-diamond device cooling can be enhanced by reducing the effective thermal boundary resistance (TBR) of the GaN/diamond interface. The thermal properties of this interface and of the polycrystalline diamond grown onto GaN using SiN and AlN barrier layers as well as without any barrier layer under different growth conditions are investigated and systematically compared for the first time. TBR values are correlated with transmission electron microscopy analysis, showing that the lowest reported TBR (∼6.5 m K/GW) is obtained by using ultrathin SiN barrier layers with a smooth interface formed, whereas the direct growth of diamond onto GaN results in one to two orders of magnitude higher TBR due to the formation of a rough interface. AlN barrier layers can produce a TBR as low as SiN barrier layers in some cases; however, their TBR are rather dependent on growth conditions. We also observe a decreasing diamond thermal resistance with increasing growth temperature.
An approach to realizing high-voltage, high-current vertical GaN-on-GaN power diodes is reported. We show that by combining a partially compensated ion-implanted edge termination (ET) with sputtered SiNx passivation and optimized ohmic contacts, devices approaching the fundamental material limits of GaN can be achieved. Devices with breakdown voltages (Vbr) of 1.68 kV and differential specific on resistances (Ron) of 0.15 mΩ cm2, corresponding to a Baliga figure of merit of 18.8 GW/cm2, are demonstrated experimentally. The ion-implantation-based ET has been analyzed through numerical simulation and validated by experiment. The use of a partially compensated ET layer, with approximately 40 nm of the p-type anode layer remaining uncompensated by the implant, is found to be optimal for maximizing Vbr. The implant-based ET enhances the breakdown voltage without compromising the forward characteristics. Devices exhibit near-ideal scaling with area, enabling currents as high as 12 A for a 1 mm diameter device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.