The effect of rotational speed and pressure rise on the leakage flow noise radiated by a low-speed axial fan, provided with rotating shroud, has been systematically investigated. The flow in the gap region has been studied by means of particle image velocimetry (PIV) measurements taken in the meridional plane. At low blade loading, the leakage flow is restrained close to the rotor ring and, at higher loading, it forms a wide recirculation zone. In the latter conditions, an unsteady flow separation likely takes place in the blade tip region which may be observed in the instantaneous flow field only. The leakage flow noise generally increases with the blade loading, but is non-monotonic, as the overall sound pressure level (OASPL) growth is interrupted by local minima; such a trend is qualitatively independent of the rotational speed. As the loading increases, the sound pressure level (SPL) spectrum shows important modifications, since the characteristic frequency of the subharmonic narrowband humps related to the leakage noise decreases; furthermore, height and width of the humps vary non-monotonically. Such a complicated behavior is likely related to the modifications in the leakage flow pattern and also to the appearance of the flow separation at the blade tip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.