Tracer techniques and quantitative autoradiographic and tissue counting models for measurement of metabolic rates were combined with positron computed tomography (PCT) and (F-18)2-fluoro-2-deoxy-D-glucose (FDG) for the measurement of local cerebral metabolic rate for glucose (LCMRGlc) in humans. A three-compartment model, which incorporates hydrolysis of FDG-6-PO4 to FDG, was developed for the measure of kinetic constants and calculation of LCMRGlc. Our model is an extension of that developed by Sokoloff et al. Although small, hydrolysis of FDG-6-PO4 was found to be significant. A PCT system, the ECAT, was used to determine the rate constants, lumped constant, and stability of the model in human beings. The data indicate that cerebral FDG-6-PO4 in humans increases for about 90 minutes, plateaus, and then slowly decreases. After 10 minutes, cerebral blood FDG activity levels were found to be a minor fraction of tissue activity. Precursor pool turnover rate, distribution volumes, and red blood cell-plasma concentration ratios were determined. Reproducibility (precision) of LCMRGlc measurements (approximate 2 cm2 regions) was +/- 5.5% over a 5-hour period. The replacement of arterial blood sampling with venous sampling was validated.
A method for the determination of local cerebral metabolic rates of glucose (LCMRGlc) in normal man is described. The method employs [18F]2-fluoro-2-deoxy-D-glucose (FDG) and emission-computed tomography (ECT). FDG was injected intravenously as a bolus. Radioactivities in separate brain regions were measured with ECT. Plasma FDG concentration following injection was measured from blood samples. A mathematical model that describes the kinetics of FDG transports was employed to determine the transport rate constants of FDG and to convert the radioactivity measurements to metabolic rates. The model has taken into account the possible dephosphorylation reaction from FDG-6-PO4 (FDG-6-P) to free FDG in brain tissues. Experiments were performed in 13 normal volunteers. The rate constants of FDG in man were found to be comparable to those of deoxyglucose in rat and in rhesus monkey. The average LCMRGlc in gray and in white matter were found to be 7.30 +/- 1.18 (SD) and 3.41 +/- 0.64 mg/min per 100 g brain tissue, respectively. The subject-to-subject variation of LCMRGlc as measured by the present method was comparable to those of other methods that measure whole-brain CMRGlc.
A method has been developed to measure local glucose consumption in the various structures of the brain in man with three-dimensional resolution. [18F]-2-deoxy-2-fluoro-D-glucose is used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissue. A mathematical model and derived operational equation are used which enable local cerebral glucose consumption to be calculated in terms of the following measurable variables. An intravenous bolus of [18F]-2-deoxy-2-fluoro-D-glucose is given and the arterial specific activity monitored for a predetermined period of from 30 to 120 minutes. Starting at 30 minutes, the activity in a series of sections through the brain is determined with three-dimensional resolution by an emission tomographic scanner. The method was used to measure local cerebral glucose consumption in two normal volunteers. The values in gray matter structures range from 5.79 mg/100 g per minute in the cerebellar cortex to 10.27 in the visual cortex, whereas, in white matter structures, the values range from 3.64 mg/100 g per minute in the corpus callosum to 4.22 in the occipital lobe. Average values for gray matter, white matter, and whole brain metabolic rates, calculated as a weighted average based on the approximate volume of each structure, are 8.05, 3.80, and 5.90 mg/100 g per minute, respectively. The value of 5.9 mg/100 g per minute compares favorably with values previously reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.