Abstract. The geophysical significance of the thin nitrate-rich layers that have been found in both Arctic and Antarctic firn and ice cores, dating from the period 1561-1991, is examined in detail. It is shown that variations of meteorological origin dominate the record until the snow has consolidated to high-density firn some 30 years after deposition. The thin nitrate layers have a characteristic short timescale (<6 weeks) and are highly correlated with periods of major solar-terrestrial disturbance, the probability of chance correlation being less than 10 -9. A one-to-one correlation is demonstrated between the
The interaction of both the particle and photon component of the solar wind with the lunar surface material is expected to produce diverse chemical reactions. Experimental evidence for proton-induced OH formation was obtained by bombarding a glass, chemically similar in composition to common silicate minerals, with high-energy protons. The concentration of OH, before and after irradiation, was determined by infrared absorption measurements. The OH formation rate was greatest at the start of the bombardment and decreased with increasing dose. The maximum proton to OH conversion rate, at the start of the irradiation, is at least 5 or 10% and may be as high as 100%. Using this result, together with estimates of the lunar age and recent solar proton flux data, we were able to make very rough calculations of the minimum proton-induced OH content in the lunar surface. If mixing or churning is not important, the upper centimeter could contain 4 X 10 •6 OH per cm 8. When protons below 40 Mev and the higher conversion rate are included in the computation, the estimated OH concentrations could increase by a factor of 10 or more. If surface mixing or churning has occurred, they should be divided by an average churning depth.
Nitrate concentrations and electrical conductivity in an ice core from central Greenland have been measured simultaneously on 1.5 cm sections along the entire length of the 122 m core. This method of micro-resolution (time resolution is 1 week -1 month) provides for statistically significant determinations of rapid variations in nitrate fallout from the polar stratosphere superimposed on a background from all other sources. The seasonal NO• background variations and the volcanic signal contained in the electrical conductivity data provide accurate dating of the ice core. This type of micro-resolution nitrate measurement appears to be useful as a tool to investigate the possible sources of polar nitrate anomalies such as solar proton events.
The high-resolution nitrate analyses of a snow sequence in Antarctica reveals clear evidence that the snow contains a chemical record of ionization from charged particles incident upon the upper atmosphere of the Earth. The Antarctic continent acts as a cold trap that effectively freezes out this signal and retains it in the stratigraphy of the ice shelves and the continental ice sheet. The signal that we measure results from the ionization of nitrogen and oxygen, the two primary constituents of the Earth's atmosphere, which subsequently react to form oxides of nitrogen. A large portion of the nitrogen oxides produced are ultimately oxidized to nitric acid and incorporated in snow crystals together with nitrates from tropospheric sources that also contribute to the general back~ound. The nitrate concentration in a firn core was measured in Antarctica by ultraviolet spectrophotometry under tightly controlled experimental procedures. Based on uninterrupted, high-resolution sampling, variations in nitrate concentration were found to average about 53~ (one standard deviation) of the mean concentration for the entire core. Short pulses of high nitrate concentration were found to show a variance of up to 1 l standard deviations above the mean. At the series mean, the precision of analysis is better than 2~The firn core was drilled by hand to a depth of 21.7 m corresponding to 62 years and including more than 5 solar cycles. The time series that resulted from a total of 1393 individual analyses shows a statistically significant modulation of the background signal that is clearly tracable to solar activity. Several anomalously large concentration peaks were observed that have been dated and found to correlate with the major solar proton events of August 1972, July 1946, and the white-light flare of July 1928.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.