Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10 Be and 14 C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10 Be ice core records from Greenland and Antarctica with the global 14 C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10 Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.
Abstract. The geophysical significance of the thin nitrate-rich layers that have been found in both Arctic and Antarctic firn and ice cores, dating from the period 1561-1991, is examined in detail. It is shown that variations of meteorological origin dominate the record until the snow has consolidated to high-density firn some 30 years after deposition. The thin nitrate layers have a characteristic short timescale (<6 weeks) and are highly correlated with periods of major solar-terrestrial disturbance, the probability of chance correlation being less than 10 -9. A one-to-one correlation is demonstrated between the
[1] The most powerful explosions on the Sun -in the form of bright flares, intense storms of solar energetic particles (SEPs), and fast coronal mass ejections (CMEs) -drive the most severe space-weather storms. Proxy records of flare energies based on SEPs in principle may offer the longest time base to study infrequent large events. We conclude that one suggested proxy, nitrate concentrations in polar ice cores, does not map reliably to SEP events. Concentrations of select radionuclides measured in natural archives may prove useful in extending the time interval of direct observations up to ten millennia, but as their calibration to solar flare fluences depends on multiple poorly known properties and processes, these proxies cannot presently be used to help determine the flare energy frequency distribution. Being thus limited to the use of direct flare observations, we evaluate the probabilities of large-energy solar events by combining solar flare observations with an ensemble of stellar flare observations. We conclude that solar flare energies form a relatively smooth distribution from small events to large flares, while flares on magnetically active, young Sun-like stars have energies and frequencies markedly in excess of strong solar flares, even after an empirical scaling with the mean coronal activity level of these stars. In order to empirically quantify the frequency of uncommonly large solar flares extensive surveys of stars of near-solar age need to be obtained, such as is feasible with the Kepler satellite. Because the likelihood of flares larger than approximately X30 remains empirically unconstrained, we present indirect arguments, based on records of sunspots and on statistical arguments, that solar flares in the past four centuries have likely not substantially exceeded the level of the largest flares observed in the space era, and that there is at most about a 10% chance of a flare larger than about X30 in the next 30 years.
Context. Understanding the Sun's magnetic activity is important because of its impact on the Earth's environment. Direct observations of the sunspots since 1610 reveal an irregular activity cycle with an average period of about 11 years, which is modulated on longer timescales. Proxies of solar activity such as 14 C and 10 Be show consistently longer cycles with well-defined periodicities and varying amplitudes. Current models of solar activity assume that the origin and modulation of solar activity lie within the Sun itself; however, correlations between direct solar activity indices and planetary configurations have been reported on many occasions. Since no successful physical mechanism was suggested to explain these correlations, the possible link between planetary motion and solar activity has been largely ignored. Aims. While energy considerations clearly show that the planets cannot be the direct cause of the solar activity, it remains an open question whether the planets can perturb the operation of the solar dynamo. Here we use a 9400 year solar activity reconstruction derived from cosmogenic radionuclides to test this hypothesis. Methods. We developed a simple physical model for describing the time-dependent torque exerted by the planets on a non-spherical tachocline and compared the corresponding power spectrum with that of the reconstructed solar activity record. Results. We find an excellent agreement between the long-term cycles in proxies of solar activity and the periodicities in the planetary torque and also that some periodicities remain phase-locked over 9400 years. Conclusions. Based on these observations we put forward the idea that the long-term solar magnetic activity is modulated by planetary effects. If correct, our hypothesis has important implications for solar physics and the solar-terrestrial connection.
In a follow‐up study to the earlier work of Webber and Higbie (2003) on 10Be production in the Earth's atmosphere by cosmic rays, we have calculated the atmospheric production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl using the FLUKA Monte Carlo code. This new calculation of atmospheric yields of these isotopes is based on 107 vertically incident protons at each of 24 logarithmically spaced energies from 10 MeV to 10 GeV, 102 times the number used in the earlier calculation, along with the latest cross sections. This permits a study of the production due to solar cosmic rays as well as galactic cosmic rays at lower energies where isotope production is a very sensitive function of energy. Solar cosmic ray spectra are reevaluated for all of the major events occurring since 1956. In terms of yearly production of 10Be, only the February 1956 solar event makes a major contribution. For 36Cl these yearly SCR production contributions are 2–5 times larger depending on the solar cosmic ray energy spectra. We have determined the yearly production of 10Be, 36Cl, and other cosmogenic isotopes above 65° geomagnetic latitude for the time period 1940–2006 covering six solar 11‐year (a) cycles. The average peak‐to‐peak 11‐a amplitude of this yearly production is 1.77. The effects of latitudinal mixing alter these direct polar production values considerably, giving an average peak‐to‐peak 11‐a amplitude of 1.48 for the global average production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.