Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.
Selective RAF inhibitors have significant activity in patients with metastatic melanoma whose tumors express BRAFV600E. However, not all patients respond equally well to treatment and the duration of response is often limited to less than 6 months. LGX818 was developed with the hypothesis that a more potent inhibitor with excellent pharmacological properties would maximize the degree and duration of patient response. LGX818 is a highly potent RAF inhibitor with selective anti-proliferative and apoptotic activity in cells expressing BRAFV600E. In the A375 (BRAFV600E) human melanoma cell line LGX818 suppresses phospho-ERK (EC50 = 3 nM) leading to potent inhibition of proliferation (EC50 = 4 nM). No significant activity was observed against a panel of 100 kinases (IC50 > 900 nM) and LGX818 did not inhibit proliferation of > 400 cell lines expressing wild-type BRAF. Contributing to the high potency of LGX818 is the extremely slow off-rate from BRAFV600E which is not observed with other RAF inhibitors. In biochemical assays the dissociation half-life was >24 hours which translated into sustained target inhibition in cells following drug wash-out. Single dose PK/PD studies in human melanoma xenograft models (BRAFV600E) indicated that LGX818 treatment at oral doses as low as 6 mg/kg resulted in strong (75%) and sustained (>24 hours) decrease in phospho-MEK, even following clearance of drug from circulation. Decreases in phospho-ERK were consistent with phospho-MEK but markers of downstream transcriptional output (DUSP6 and SPRY4) appeared to provide a more sensitive measure of pathway activation. LGX818 induced tumor regression in multiple BRAF mutant human tumor xenograft models grown in immune compromised mice and rats at doses as low as 1 mg/kg. Consistent with the in vitro data, LGX818 was inactive against BRAF wild-type tumors at doses up to 300 mg/kg bid, with good tolerability and linear increase in exposure. Efficacy was also achieved in a more disease-relevant spontaneous metastatic melanoma and a model of melanoma brain metastasis. LGX818 is a potent and selective RAF kinase inhibitor with unique biochemical properties that contribute to an excellent pharmacological profile. A Phase I clinical trial in patients with BRAF mutant tumors is ongoing. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3790. doi:1538-7445.AM2012-3790
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.