Protein kinases are coded by more than 2,000 genes and thus constitute the largest single enzyme family in the human genome. Most cellular processes are in fact regulated by the reversible phosphorylation of proteins on serine, threonine, and tyrosine residues. At least 30% of all proteins are thought to contain covalently bound phosphate. Despite the importance and widespread occurrence of this modification, identification of sites of protein phosphorylation is still a challenge, even when performed on highly purified protein. Reported here is methodology that should make it possible to characterize most, if not all, phosphoproteins from a whole-cell lysate in a single experiment. Proteins are digested with trypsin and the resulting peptides are then converted to methyl esters, enriched for phosphopeptides by immobilized metal-affinity chromatography (IMAC), and analyzed by nanoflow HPLC/electrospray ionization mass spectrometry. More than 1,000 phosphopeptides were detected when the methodology was applied to the analysis of a whole-cell lysate from Saccharomyces cerevisiae. A total of 216 peptide sequences defining 383 sites of phosphorylation were determined. Of these, 60 were singly phosphorylated, 145 doubly phosphorylated, and 11 triply phosphorylated. Comparison with the literature revealed that 18 of these sites were previously identified, including the doubly phosphorylated motif pTXpY derived from the activation loop of two mitogen-activated protein (MAP) kinases. We note that the methodology can easily be extended to display and quantify differential expression of phosphoproteins in two different cell systems, and therefore demonstrates an approach for "phosphoprofiling" as a measure of cellular states.
PURPOSE: IMpower133 (ClinicalTrials.gov identifier: NCT02763579 ), a randomized, double-blind, phase I/III study, demonstrated that adding atezolizumab (anti-programmed death-ligand 1 [PD-L1]) to carboplatin plus etoposide (CP/ET) for first-line (1L) treatment of extensive-stage small-cell lung cancer (ES-SCLC) resulted in significant improvement in overall survival (OS) and progression-free survival (PFS) versus placebo plus CP/ET. Updated OS, disease progression patterns, safety, and exploratory biomarkers (PD-L1, blood-based tumor mutational burden [bTMB]) are reported. PATIENTS AND METHODS: Patients with untreated ES-SCLC were randomly assigned 1:1 to receive four 21-day cycles of CP (area under the curve 5 mg per mL/min intravenously [IV], day 1) plus ET (100 mg/m2 IV, days 1-3) with atezolizumab (1,200 mg IV, day 1) or placebo, and then maintenance atezolizumab or placebo until unacceptable toxicity, disease progression, or loss of clinical benefit. Tumor specimens were collected; PD-L1 testing was not required for enrollment. The two primary end points, investigator-assessed PFS and OS, were statistically significant at the interim analysis. Updated OS and PFS and exploratory biomarker analyses were conducted. RESULTS: Patients received atezolizumab plus CP/ET (n = 201) or placebo plus CP/ET (n = 202). At the updated analysis, median follow-up for OS was 22.9 months; 302 deaths had occurred. Median OS was 12.3 and 10.3 months with atezolizumab plus CP/ET and placebo plus CP/ET, respectively (hazard ratio, 0.76; 95% CI, 0.60 to 0.95; descriptive P = .0154). At 18 months, 34.0% and 21.0% of patients were alive in atezolizumab plus CP/ET and placebo plus CP/ET arms, respectively. Patients derived benefit from the addition of atezolizumab, regardless of PD-L1 immunohistochemistry or bTMB status. CONCLUSION: Adding atezolizumab to CP/ET as 1L treatment for ES-SCLC continued to demonstrate improved OS and a tolerable safety profile at the updated analysis, confirming the regimen as a new standard of care. Exploratory analyses demonstrated treatment benefit independent of biomarker status.
Hoffmann-La Roche, during the conduct of the study, and editorial support funded by the sponsor and provided by an independent medical writer under the guidance of the authors. Cappuzzo has been a consultant/advisor for AstraZeneca, Bristol-Myers Squibb, Merck Sharp & Dohme, Pfizer, Roche, and Takeda; received a grant and nonfinancial support from F. Hoffmann-La Roche during the conduct of the study; and received editorial support funded by the sponsor and provided by an independent medical writer under the guidance of the authors. Rodríguez-Abreu has participated in speakers' bureaus for AstraZeneca, Bristol-Myers Squibb, Merck Sharp & Dohme, Pfizer, and Roche; received a grant and nonfinancial support from F. Hoffmann-La Roche during the conduct of the study; and received editorial support funded by the sponsor and provided by an independent medical writer under the guidance of the authors. Hussein has participated in speakers' bureaus for Bristol-Myers Squibb, Incyte, and Pfizer. Soo has received grants from AstraZeneca and Boehringer-Ingelheim and personal fees from AstraZeneca,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.