We have developed a computer code for an IBM PC/XT/AT or compatible which can be used to estimate, edit, or enter thermodynamic property data for gas phase radicals and molecules using Benson's group additivity method. The computer code is called THERM (THermo Estimation for Radicals and Molecules). All group contributions considered for a species are recorded and thermodynamic properties are generated in old NASA polynomial format for compatibility with the CHEMKIN reaction modeling code. In addition, listings are created in a format more convenient for thermodynamic, kinetic, and equilibrium calculations. Polynomial coefficients are valid from 300-5000 K using extrapolation methods based upon the harmonic oscillator model, an exponential function, or the Wilhoit polynomials. Properties for radical and biradical species are calculated by applying bond dissociation increments to a stable parent molecule to reflect loss of H atom. THERM contains a chemical reaction interpreter to calculate thermodynamic property changes for chemical reactions as functions of temperature. These include equilibrium constant, heat release (required heat, AHr), entropy change (ASr), Gibbs free energy change (AG,), and the ratio of forward to reverse Arrhenius A-factors (for elementary reactions). This interpreter can also process CHEMKIN input files. A recalculation procedure is incorporated for rapid updating of a database of chemical species to reflect changes in estimated bond dissociation energies, heats of formation, or other group values. All input and output files are in ASCII so that they can be easily edited, expanded, or updated.
A computer package has been developed called THERM, an acronym for THermodynamic property Estimation for Radicals and Molecules. THERM is a versatile computer code designed to automate the estimation of ideal gas phase thermodynamic properties for radicals and molecules important to combustion and reaction-modeling studies. Thermodynamic properties calculated include heat of formation and entropies at 298 K and heat capacities from 300 to 1500 K. Heat capacity estimates are then extrapolated to above 5000 K, and NASA format polynomial thermodynamic property representations valid from 298 to 5000 K are generated. This code is written in Microsoft Fortran version 5.0 for use on machines running under MSDOS. THERM uses group additivity principles of Benson and current best values for bond strengths, changes in entropy, and loss of vibrational degrees of freedom to estimate properties for radical species from parent molecules. This ensemble of computer programs can be used to input literature data, estimate data when not available, and review, update, and revise entries to reflect improvements and modifications to the group contribution and bond dissociation databases. All input and output files are ASCII so that they can be easily edited, updated, or expanded. In addition, heats of reaction, entropy changes, Gibbs free-energy changes, and equilibrium constants can be calculated as functions of temperature from a NASA format polynomial database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.