A series of N-alkyl-N'-hydroxyguanidine compounds have recently been characterized as non-amino acid substrates for all three nitric oxide synthase (NOS) isoforms which mimic NO formation from N(omega)-hydroxy-L-arginine. Crystal structures of the nNOS heme domain complexed with either N-isopropyl-N'-hydroxyguanidine or N-butyl-N'-hydroxyguanidine reveal two different binding modes in the substrate binding pocket. The binding mode of the latter is consistent with that observed for the substrate N(omega)-hydroxy-L-arginine bound in the nNOS active site. However, the former binds to nNOS in an unexpected fashion, thus providing new insights into the mechanism on how the hydroxyguanidine moiety leads to NO formation. Structural features of substrate binding support the view that the OH-substituted guanidine nitrogen, instead of the hydroxyl oxygen, is the source of hydrogen supplied to the active ferric-superoxy species for the second step of the NOS catalytic reaction.
The denatured state of a miniprotein BBA1 is studied under the native condition with the AMBER/Poisson-Boltzmann energy model and with the self-guided enhanced sampling technique. Forty independent trajectories are collected to sample the highly diversified denatured structures. Our simulation data show that the denatured BBA1 contains high percentage of native helix and native turn, but low percentage of native hairpin. Conditional population analysis indicates that the native helix formation and the native hairpin formation are not cooperative in the denatured state. Side-chain analysis shows that the native hydrophobic contacts are more preferred than the non-native hydrophobic contacts in the denatured BBA1. In contrast, the salt-bridge contacts are more or less nonspecific even if their populations are higher than those of hydrophobic contacts. Analysis of the trajectories shows that the native helix mostly initiates near the N terminus and propagates to the C terminus, and mostly forms from 3(10)-helix/turn to alpha helix. The same analysis shows that the native turn is important but not necessary in its formation in the denatured BBA1. In addition, the formations of the two strands in the native hairpin are rather asymmetric, demonstrating the likely influence of the protein environment. Energetic analysis shows that the native helix formation is largely driven by electrostatic interactions in denatured BBA1. Further, the native helix formation is associated with the breakup of non-native salt-bridge contacts and the accumulation of native salt-bridge contacts. However, the native hydrophobic contacts only show a small increase upon the native helix formation while the non-native hydrophobic contacts stay essentially the same, different from the evolution of hydrophobic contacts observed in an isolated helix folding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.