The G6b gene, located in the class III region of the human major histocompatibility complex, has been suggested to encode a putative receptor of the immunoglobulin superfamily. Genomic sequence information was used as a starting point to clone the corresponding cDNA. Reverse transcriptase polymerase chain reaction showed that expression of the gene is restricted to certain hematopoietic cell lines including K562, Molt 4, and Jurkat. Several splice variants were detected, varying only in their C-terminal parts. One of the potential membrane-bound isoforms contained two immunoreceptor tyrosine-based inhibitory motifs in its cytoplasmic tail. Four of the isoforms were expressed as epitope-tagged proteins in the cell lines K562 and COS-7. The two splice isoforms lacking the hydrophobic transmembrane segment were secreted from the cell. Glycosidase treatment of the four recombinant proteins provided evidence for N-and O-glycosylation. Immunofluorescence studies indicated that the spliced isoforms having a transmembrane segment were directed to the cell membrane. The G6b isoform containing two immunoreceptor tyrosinebased inhibitory motifs in its cytoplasmic tail was found to be phosphorylated on tyrosine residues after pervanadate treatment of cells and, subsequently, interacts with the SH2-containing protein-tyrosine phosphatases SHP-1 and SHP-2. Mutagenesis studies showed that phosphorylation of tyrosine 211 is critical for the interaction of G6b with SHP-1 and SHP-2.The Ig superfamily receptors constitute a large group of cell surface proteins involved in the immune system and cellular recognition (1, 2). Members of this family are characterized by an extracellular part containing at least one immunoglobulin domain, a transmembrane segment, and a cytoplasmic tail. A subset of the Ig superfamily is the inhibitory receptor characterized by the presence of one or more immunoreceptor tyrosine-based inhibitory motifs (ITIM) 1 in their cytoplasmic tail.The consensus sequence of the ITIM is generally described as (L/V/I/S/T)XYXX(L/V) (3). Following phosphorylation of the tyrosine residue within this motif, the SH2 domain containing protein-tyrosine phosphatases SHP-1 and/or SHP-2 can be recruited to the receptor, where they can dephosphorylate membrane-bound phosphoproteins, thus modulating the signaling cascade. SHP-1 is a non-transmembrane protein primarily expressed in hematopoietic cells and is considered to play a negative role in cell signaling (4). Identified substrates for SHP-1 are the linker of activated T-cells (5, 6) and the adapter protein Slp-76 (7). In contrast, SHP-2 has been considered to act primarily as a positive signal transducer (8). Possible substrates for this phosphatase are the platelet-derived growth factor beta receptor (9) and PZR (10). SHP-2 modulates the signal strength of receptor-protein-tyrosine kinases and is also involved in cytokine and antigen signaling not involving receptors with intrinsic kinase activity (11). Although the two phosphatases appear to have opposing roles, there are ...
Background:Duplicated genes are common in vertebrate genomes. Their persistence is assumed to be either a consequence of gain of novel function (neofunctionalisation) or partitioning of the function of the ancestral molecule (sub-functionalisation). Surprisingly few studies have evaluated the extent of such modifications despite the numerous duplicated receptor and ligand genes identified in vertebrate genomes to date. In order to study the importance of function in the maintenance of duplicated genes, sea bream (Sparus auratus) PAC1 receptors, sequence homologues of the mammalian receptor specific for PACAP (Pituitary Adenylate Cyclase-Activating Polypeptide), were studied. These receptors belong to family 2 GPCRs and most of their members are duplicated in teleosts although the reason why both persist in the genome is unknown.Results:Duplicate sea bream PACAP receptor genes (sbPAC1A and sbPAC1B), members of family 2 GPCRs, were isolated and share 77% amino acid sequence identity. RT-PCR with specific primers for each gene revealed that they have a differential tissue distribution which overlaps with the distribution of the single mammalian receptor. Furthermore, in common with mammals, the teleost genes undergo alternative splicing and a PAC1Ahop1 isoform has been characterised. Duplicated orthologous receptors have also been identified in other teleost genomes and their distribution profile suggests that function may be species specific. Functional analysis of the paralogue sbPAC1s in Cos7 cells revealed that they are strongly stimulated in the presence of mammalian PACAP27 and PACAP38 and far less with VIP (Vasoactive Intestinal Peptide). The sbPAC1 receptors are equally stimulated (LOGEC50 values for maximal cAMP production) in the presence of PACAP27 (-8.74 ± 0.29 M and -9.15 ± 0.21 M, respectively for sbPAC1A and sbPAC1B, P > 0.05) and PACAP38 (-8.54 ± 0.18 M and -8.92 ± 0.24 M, respectively for sbPAC1A and sbPAC1B, P > 0.05). Human VIP was found to stimulate sbPAC1A (-7.23 ± 0.20 M) more strongly than sbPAC1B (-6.57 ± 0.14 M, P < 0.05) and human secretin (SCT), which has not so far been identified in fish genomes, caused negligible stimulation of both receptors.Conclusion:The existence of functionally divergent duplicate sbPAC1 receptors is in line with previously proposed theories about the origin and maintenance of duplicated genes. Sea bream PAC1 duplicate receptors resemble the typical mammalian PAC1, and PACAP peptides were found to be more effective than VIP in stimulating cAMP production, although sbPAC1A was more responsive for VIP than sbPAC1B. These results together with the highly divergent pattern of tissue distribution suggest that a process involving neofunctionalisation occurred after receptor duplication within the fish lineage and probably accounts for their persistence in the genome. The characterisation of further duplicated receptors and their ligands should provide insights into the evolution and function of novel protein-protein interactions associated with the vertebrate radiation.
The G6b gene, located in the human Major Histocompatibility Complex, encodes a receptor of the immunoglobulin (Ig) superfamily. In this study, we show using a variety of techniques that the extracellular domain of the G6b protein, containing a single Ig-like domain, binds to heparin with high affinity. In an ELISA assay, this binding was displaceable with soluble heparin with an IC50 value of approximately 0.5 lg/ml. Other sulfated glycans showed weaker or no competition. The observed interaction between G6b and heparin is strongly salt dependent suggesting a mainly electrostatic interaction. Heparin might modulate the interaction of G6b with its as yet unidentified protein ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.