A study of contact force between rollers and races in a roller bearing with a numerical model for mechanical event simulations bearing is presented in this paper with different load type on shaft. These numerical models provide with the spatial and time distributions of stress and strain values, as well as all the nodal displacements at every time step. The model was developed with the finite element method (FEM) for mechanical event simulations (MES) with the commercial code Algor TM . The model has been validated by verifying that the contact force distributions correspond to those predicted by the analytical model of Harris-Jones.
This article proposes a numerical model of Permanent Magnet Linear Synchronous Motors (PMLSMs) for use as a tracking mechanism for the transport system. This paper studies the behavior under operating two types of linear motors to analyze and compare the system of forces and vibration levels to determine its efficiency as a transport system. The first model of motor has configuration of opposite poles and second has Halbach type configuration, are analyzed by the finite element method with commercial software FLUX™. The data of variation of force called ripple are analyzed with techniques for vibration signals using wavelet coefficients for classification of MatLab™ software to determine the concentration of vibrational energy levels and the parameters identified for each proposed linear motor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.