This work presents and discusses a general approach for the dynamic modeling and analysis of a passive biped walking robot, with a particular focus on the feet-ground contact interaction. The main purpose of this investigation is to address the supporting foot slippage and viscoelastic dissipative contact forces of the biped robot-walking model and to develop its dynamics equations for simple and double support phases. For this investigation, special attention has been given to the detection of the contact/impact between the legs of the biped and the ground. The results have been obtained with multibody system dynamics applying forward dynamics. This study aims at examining and comparing several force models dealing with different approaches in the context of multibody system dynamics. The normal contact forces developed during the dynamic walking of the robot are evaluated using several models: Hertz, Kelvin-Voight, Hunt and Crossley, Lankarani and Nikravesh, and Flores. Thanks to this comparison, it was shown that the normal force that works best for this model is the dissipative Nonlinear Flores Contact Force Model (hysteresis damping parameter - energy dissipation). Likewise, the friction contact/impact problem is solved using the Bengisu equations. The numerical results reveal that the stable periodic solutions are robust. Integrators and resolution methods are also purchased, in order to obtain the most efficient ones for this model.
A quasi-passive biped (having only one actuator) developed into a Spanish project called "PASIBOT" [1] is presented in this article. We focus on the PASIBOT's topology, kinematics and dynamics, and we describe a program designed for carrying out the corresponding calculations. This code provides for all kinematic and dynamic data, as functions of time, along one step: position, velocity and acceleration of all members, as well as all the forces and torques on each of them, motor torque included. This latter information has helped us to choose the required motor, as this choice depends on some parameters of interest that can be modified in the program, like density or link dimensions. Also, we will be able to get strain-stress data in all links in the course of a step, and then optimize those dimensions. To finish, some results are also presented that confirm the interest of the developed code.
In the maintenance of motor driven systems, detection of cracks in shafts play a critical role. Condition monitoring and fault diagnostics detect and distinguish different kinds of machinery faults, and provide a significant improvement in maintenance efficiency. In this study, we apply the discrete wavelet transform theory and multiresolution analysis (MRA) to vibration signals to find characteristic patterns of shafts with a transversal crack. The feature vectors generated are used as input to an intelligent classification system based on artificial neural networks (ANNs). Wavelet theory provides signal timescale information, and enables the extraction of significant features from vibration signals that can be used for damage detection. The feature vectors generated for every fault condition feed a radial basis function neural network (ANN-RBF) and apply supervised learning designed and adapted for different fault crack conditions. Together, MRA and RBF constitute an automatic monitoring system with a fast diagnosis online capability. The proposed method is applied to simulated numerical signals to prove its soundness. The numerical data are acquired from a modified Jeffcott Rotor model with four transverse breathing crack sizes. The results demonstrate that this novel diagnostic method that combines wavelets and an artificial neural network is an efficient tool for the automatic detection of cracks in rotors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.