AbstractÐThis paper makes two contributions to the problem of needle-map recovery using shape-from-shading. First, we provide a geometric update procedure which allows the image irradiance equation to be satisfied as a hard constraint. This not only improves the data closeness of the recovered needle-map, but also removes the necessity for extensive parameter tuning. Second, we exploit the improved ease of control of the new shape-from-shading process to investigate various types of needle-map consistency constraint. The first set of constraints are based on needle-map smoothness. The second avenue of investigation is to use curvature information to impose topographic constraints. Third, we explore ways in which the needle-map is recovered so as to be consistent with the image gradient field. In each case we explore a variety of robust error measures and consistency weighting schemes that can be used to impose the desired constraints on the recovered needle-map. We provide an experimental assessment of the new shape-from-shading framework on both real world images and synthetic images with known ground truth surface normals. The main conclusion drawn from our analysis is that the data-closeness constraint improves the efficiency of shape-from-shading and that both the topographic and gradient consistency constraints improve the fidelity of the recovered needle-map.
Abstract-This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching. Broadly speaking there are two main aspects to this study. Firstly we focus on the issue of how relational inexactness may be quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is controlled. We investigate three different realizations of the matching process which draw on contrasting control models. The main conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively control a large population of contaminating clutter.
In this paper we explore how to embed symbolic relational graphs with unweighted edges in a pattern-space. We adopt a graph-spectral approach. We use the leading eigenvectors of the graph adjacency matrix to deÿne eigenmodes of the adjacency matrix. For each eigenmode, we compute vectors of spectral properties. These include the eigenmode perimeter, eigenmode volume, Cheeger number, inter-mode adjacency matrices and intermode edge-distance. We embed these vectors in a pattern-space using two contrasting approaches. The ÿrst of these involves performing principal or independent components analysis on the covariance matrix for the spectral pattern vectors. The second approach involves performing multidimensional scaling on the L2 norm for pairs of pattern vectors. We illustrate the utility of the embedding methods on neighbourhood graphs representing the arrangement of corner features in 2D images of 3D polyhedral objects. Two problems are investigated. The ÿrst of these is the clustering of graphs representing distinct objects viewed from di erent directions. The second is the identiÿcation of characteristic views of single objects. These two studies reveal that both embedding methods result in well-structured view spaces for graph-data extracted from 2D views of 3D objects.
This paper exploits the properties of the commute time between nodes of a graph for the purposes of clustering and embedding, and explores its applications to image segmentation and multi-body motion tracking. Our starting point is the lazy random walk on the graph, which is determined by the heatkernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterize the random walk using the commute time (i.e. the expected time taken for a random walk to travel between two nodes and return) and show how this quantity may be computed from the Laplacian spectrum using the discrete Green's function. Our motivation is that the commute time can be anticipated to be a more robust measure of the proximity of data than the raw proximity matrix. In this paper, we explore two applications of the commute time. The first is to develop a method for image segmentation using the eigenvector corresponding to the smallest eigenvalue of the commute time matrix. We show that our commute time segmentation method has the property of enhancing the intra-group coherence while weakening inter-group coherence and is superior to the normalized cut. The second application is to develop a robust multi-body motion tracking method using an embedding based on the commute time.Our embedding procedure preserves commute time, and is closely akin to kernel PCA, the Laplacian eigenmap and the diffusion map. We illustrate the results both on synthetic image sequences and real world video sequences, and compare our results with several alternative methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.