This paper exploits the properties of the commute time between nodes of a graph for the purposes of clustering and embedding, and explores its applications to image segmentation and multi-body motion tracking. Our starting point is the lazy random walk on the graph, which is determined by the heatkernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterize the random walk using the commute time (i.e. the expected time taken for a random walk to travel between two nodes and return) and show how this quantity may be computed from the Laplacian spectrum using the discrete Green's function. Our motivation is that the commute time can be anticipated to be a more robust measure of the proximity of data than the raw proximity matrix. In this paper, we explore two applications of the commute time. The first is to develop a method for image segmentation using the eigenvector corresponding to the smallest eigenvalue of the commute time matrix. We show that our commute time segmentation method has the property of enhancing the intra-group coherence while weakening inter-group coherence and is superior to the normalized cut. The second application is to develop a robust multi-body motion tracking method using an embedding based on the commute time.Our embedding procedure preserves commute time, and is closely akin to kernel PCA, the Laplacian eigenmap and the diffusion map. We illustrate the results both on synthetic image sequences and real world video sequences, and compare our results with several alternative methods.
Although inexact graph-matching is a problem of potentially exponential complexity, the problem may be simplified by decomposing the graphs to be matched into smaller subgraphs. If this is done, then the process may cast into a hierarchical framework and hence rendered suitable for parallel computation. In this paper we describe a spectral method which can be used to partition graphs into nonoverlapping subgraphs. In particular, we demonstrate how the Fiedler-vector of the Laplacian matrix can be used to decompose graphs into non-overlapping neighbourhoods that can be used for the purposes of both matching and clustering.
This paper exploits the properties of the commute time to develop a graphspectral method for image segmentation. Our starting point is the lazy random walk on the graph, which is determined by the heat-kernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterise the random walk using the commute time between nodes, and show how this quantity may be computed from the Laplacian spectrum using the discrete Green's function. We explore the application of the commute time for image segmentation using the eigenvector corresponding to the smallest eigenvalue of the commute time matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.