Little is known about how neurons in the different layers of the mammalian cerebral cortex are specified at the molecular level. Expression of two homologues of the Drosophila homeobox Cut gene, Cux-1 and Cux-2, is strikingly specific to the pyramidal neurons of the upper layers (II-IV) of the murine cortex, suggesting that they may define the molecular identity of these neurons. An antibody against Cux-1 labels the nucleus of most of the postmitotic upper layer neurons but does not label parvoalbumin-positive cortical interneurons that derive from the medial ganglionic eminence. Cux-1 and Cux-2 represent early markers of neuronal differentiation; both genes are expressed in postmitotic cortical neurons from embryonic stages to adulthood and in the proliferative regions of the developing cortex. In precursors cells, Cux-1 immunoreactivity is weak and diffuse in the cytoplasm and nucleus of ventricular zone (VZ) cells, whereas it is nuclear in the majority of bromodeoxyuridine (BrdU)-positive subventricular zone (SVZ) dividing cells, suggesting that Cux-1 function is first activated in SVZ cells. Cux-2 mRNA expression is also found in the embryonic SVZ, overlapping with BrdU-positive dividing precursors, but it is not expressed in the VZ. A null mutation in Pax-6 disrupts Cux-2 expression in the SVZ and Cux-1 and Cux-2 expression in the postmigratory cortical neurons. Thus, these data support the existence of an intermediate neuronal precursor in the SVZ dedicated to the generation of upper layer neurons, marked specifically by Cux-2. The patterns of expression of Cux genes suggest potential roles as determinants of the neuronal fate of the upper cortical layer neurons.
This paper describes a gradient-generating microfluidic platform for optimizing proliferation and differentiation of neural stem cells (NSCs) in culture. Microfluidic technology has great potential to improve stem cell (SC) cultures, whose promise in cell-based therapies is limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms should provide much greater control over cell microenvironment and rapid optimization of media composition using relatively small numbers of cells. Our platform exposes cells to a concentration gradient of growth factors under continuous flow, thus minimizing autocrine and paracrine signaling. Human NSCs (hNSCs) from the developing cerebral cortex were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor (GF) mixture containing epidermal growth factor (EGF), fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF). Proliferation and differentiation of NSCs into astrocytes were monitored by time-lapse microscopy and immunocytochemistry. The NSCs remained healthy throughout the entire culture period, and importantly, proliferated and differentiated in a graded and proportional fashion that varied directly with GF concentration. These concentration-dependent cellular responses were quantitatively similar to those measured in control chambers built into the device and in parallel cultures using traditional 6-well plates. This gradient-generating microfluidic platform should be useful for a wide range of basic and applied studies on cultured cells, including SCs.
The earliest step in creating the cerebral cortex is the specification of neuroepithelium to a cortical fate. Using mouse genetic mosaics and timed inactivations, we demonstrated that Lhx2 acts as a classic selector gene and essential intrinsic determinant of cortical identity. Lhx2 selector activity is restricted to an early critical period when stem cells comprise the cortical neuroepithelium, where it acts cell-autonomously to specify cortical identity and suppress alternative fates in a spatially dependent manner. Laterally, Lhx2 null cells adopt antihem identity, whereas medially they become cortical hem cells, which can induce and organize ectopic hippocampal fields. In addition to providing functional evidence for Lhx2 selector activity, these findings show that the cortical hem is a hippocampal organizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.