The aim of this study was to compare geometric parameters of olive trees (tree height, crown base height, crown diameters, crown area), using LiDAR data of different densities: 0.5, 3.5 and 9 points m -2 . Two strategies were proposed and verified with a focus on raster and raw data analysis. Statistical tests have shown, that for the tree height and crown base height estimation, the choice of strategy was irrelevant, but denser LiDAR data provided more accurate results. The raster analysis strategy applied for sparse and dense LiDAR datasets allowed crown shape to be determined with a similar accuracy which means raster data are useful for estimating other indirect tree parameters. The quality of results was independent from the tree size.
The estimation of dendrometric parameters has become an important issue for agriculture planning and for the efficient management of orchards. Airborne Laser Scanning (ALS) data is widely used in forestry and many algorithms for automatic estimation of dendrometric parameters of individual forest trees were developed. Unfortunately, due to significant differences between forest and fruit trees, some contradictions exist against adopting the achievements of forestry science to agricultural studies indiscriminately.<br> In this study we present the methodology to identify individual trees in apple orchard and estimate heights of individual trees, using high-density LiDAR data (3200&thinsp;points/m<sup>2</sup>) obtained with Unmanned Aerial Vehicle (UAV) equipped with Velodyne HDL32-E sensor. The processing strategy combines the alpha-shape algorithm, principal component analysis (PCA) and detection of local minima. The alpha-shape algorithm is used to separate tree rows. In order to separate trees in a single row, we detect local minima on the canopy profile and slice polygons from alpha-shape results. We successfully separated 92&thinsp;% of trees in the test area. 6&thinsp;% of trees in orchard were not separated from each other and 2&thinsp;% were sliced into two polygons. The RMSE of tree heights determined from the point clouds compared to field measurements was equal to 0.09&thinsp;m, and the correlation coefficient was equal to 0.96. The results confirm the usefulness of LiDAR data from UAV platform in orchard inventory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.