Abstract. Twitter as a new form of social media can potentially contain much useful information, but content analysis on Twitter has not been well studied. In particular, it is not clear whether as an information source Twitter can be simply regarded as a faster news feed that covers mostly the same information as traditional news media. In This paper we empirically compare the content of Twitter with a traditional news medium, New York Times, using unsupervised topic modeling. We use a Twitter-LDA model to discover topics from a representative sample of the entire Twitter. We then use text mining techniques to compare these Twitter topics with topics from New York Times, taking into consideration topic categories and types. We also study the relation between the proportions of opinionated tweets and retweets and topic categories and types. Our comparisons show interesting and useful findings for downstream IR or DM applications.
Wikipedia has grown to be the world largest and busiest free encyclopedia, in which articles are collaboratively written and maintained by volunteers online. Despite its success as a means of knowledge sharing and collaboration, the public has never stopped criticizing the quality of Wikipedia articles edited by non-experts and inexperienced contributors. In this paper, we investigate the problem of assessing the quality of articles in collaborative authoring of Wikipedia. We propose three article quality measurement models that make use of the interaction data between articles and their contributors derived from the article edit history. Our Basic model is designed based on the mutual dependency between article quality and their author authority. The PeerReview model introduces the review behavior into measuring article quality. Finally, our ProbReview models extend PeerReview with partial reviewership of contributors as they edit various portions of the articles. We conduct experiments on a set of well-labeled Wikipedia articles to evaluate the effectiveness of our quality measurement models in resembling human judgement.
In recent years, opinion mining attracted a great deal of research attention. However, limited work has been done on detecting opinion spam (or fake reviews). The problem is analogous to spam in Web search [1, 9 11]. However, review spam is harder to detect because it is very hard, if not impossible, to recognize fake reviews by manually reading them [2]. This paper deals with a restricted problem, i.e., identifying unusual review patterns which can represent suspicious behaviors of reviewers. We formulate the problem as finding unexpected rules. The technique is domain independent. Using the technique, we analyzed an Amazon.com review dataset and found many unexpected rules and rule groups which indicate spam activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.