The reference sample plot (RSP) method is a distance-weighted k nearest neighbour estimation method, which allows simultaneous interpretation of several variables. In the RSP method, the k spectrally nearest field plots are looked at separately for each unknown pixel, and the area weight of the unknown pixel is divided as a function of the spectral distances to the nearest plots. The RSP method was examined in a forest inventory for estimating stem volumes by tree species groups using different satellite materials. Two methods were tested both in searching for and weighting the nearest field plots. Euclidean distance functions worked steadily with all the volume variables studied. The other distance measure tested was based on regression modelling. With more than 15 plots, both covariance weighting and inverse distance weighting gave similar results. Considering the field data of this study, the suitable number of the nearest plots in plotwise estimation appeared to be between 10 and 15 plots. With Landsat TM, SPOT XS and SPOT P, the differences in standard errors were minor. When combined TM and SPOT P were used, the plotwise standard error of total volume was still over 60 per cent.
In Finland, there are currently two, parallel sample-plot-based forest inventory systems, which differ in their methodologies, sampling designs, and objectives. One is the National Forest Inventory (NFI), aimed at unbiased inventory results at national and regional level. The other is the Forest Centre's management-oriented forest inventory based on interpretation of airborne laser scanning and aerial images, with the aim of locally accurate stand-level forest estimates. The National Forest Inventory utilises relascope sample plots with systematic cluster sampling. This inventory method is optimised for accuracy of regional volume estimates. In contrast, the management-oriented forest inventory utilises circular sample plots with an allocation system covering certain pre-defined forest classes in the inventory area. This method is optimised to produce reference data for interpretation of the remote-sensing materials in use. In this study, we tested the feasibility of the National Forest Inventory sample plots in provision of additional reference data for the management-oriented inventory. Various combinations of NFI plots and management inventory plots were tested in the interpretation of the laser and aerial-image data. Adding NFI plots in the reference data generally improved the accuracy of the volume estimates by tree species but not the estimates of total volume or stand mean height and diameter. The difference between the plot types in the NFI and management inventories causes difficulties in combination of the two datasets.
An approach based on the nearest neighbors techniques is presented for producing thematic maps of forest cover (forest/non-forest) and total stand volume for the Terai region in southern Nepal. To create the forest cover map, we used a combination of Landsat TM satellite data and visual interpretation data, i.e., a sample grid of visual interpretation plots for which we obtained the land use classification according to the FAO standard. These visual interpretation plots together with the field plots for volume mapping originate from an operative forest inventory project, i.e., the Forest Resource Assessment of Nepal (FRA Nepal) project. The field plots were also used in checking the classification accuracy. MODIS satellite data were used as a reference in a local correction approach conducted for the relative calibration of Landsat TM images. This study applied a non-parametric k-nearest neighbor technique (k-NN) to the forest cover and volume mapping. A tree height prediction approach based on a nonlinear, mixed-effects (NLME) modeling procedure is presented in the Appendix. The MODIS image data performed well as reference data for the calibration approach applied to make the Landsat image mosaic. The agreement between the forest cover map and the field observed values of forest cover was substantial in Western Terai (KHAT 0.745) and strong in Eastern Terai (KHAT 0.825). The forest cover and volume maps that were estimated using the k-NN method and the inventory data from the FRA Nepal project are already appropriate and valuable data for research purposes and for the planning of forthcoming forest inventories. Adaptation of the methods and techniques was carried out using Open Source software tools
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.