Generalized nucleus segmentation techniques can contribute greatly to reducing the time to develop and validate visual biomarkers for new digital pathology datasets. We summarize the results of MoNuSeg 2018 Challenge whose objective was to develop generalizable nuclei segmentation techniques in digital pathology. The challenge was an official satellite event of the MICCAI 2018 conference in which 32 teams with more than 80 participants from geographically diverse institutes participated. Contestants were given a training set with 30 images from seven organs with annotations of 21,623 individual nuclei. A test dataset with 14 images taken from seven organs, including two organs that did not appear in the training set was released without annotations. Entries were evaluated based on average aggregated Jaccard index (AJI) on the test set to prioritize accurate instance segmentation as opposed to mere semantic segmentation. More than half the teams that completed the challenge outperformed a previous baseline [1]. Among the trends observed that contributed to increased accuracy were the use of color normalization as well as heavy data augmentation. Additionally, fully convolutional networks inspired by variants of U-Net [2], FCN [3], and Mask- RCNN [4] were popularly used, typically based on ResNet [5] or VGG [6] base architectures. Watershed segmentation on predicted semantic segmentation maps was a popular post-processing strategy. Several of the top techniques compared favorably to an individual human annotator and can be used with confidence for nuclear morphometrics.
Accurate segmenting nuclei instances is a crucial step in computer-aided image analysis to extract rich features for cellular estimation and following diagnosis as well as treatment. While it still remains challenging because the wide existence of nuclei clusters, along with the large morphological variances among different organs make nuclei instance segmentation susceptible to over-/under-segmentation. Additionally, the inevitably subjective annotating and mislabeling prevent the network learning from reliable samples and eventually reduce the generalization capability for robustly segmenting unseen organ nuclei. To address these issues, we propose a novel deep neural network, namely Contour-aware Informative Aggregation Network (CIA-Net) with multilevel information aggregation module between two task-specific decoders. Rather than independent decoders, it leverages the merit of spatial and texture dependencies between nuclei and contour by bi-directionally aggregating task-specific features. Furthermore, we proposed a novel smooth truncated loss that modulates losses to reduce the perturbation from outliers. Consequently, the network can focus on learning from reliable and informative samples, which inherently improves the generalization capability. Experiments on the 2018 MICCAI challenge of Multi-Organ-Nuclei-Segmentation validated the effectiveness of our proposed method, surpassing all the other 35 competitive teams by a significant margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.