The impact of a nanostructured NiO/yttria-stabilized zirconia (NiO/YSZ) and NiO/gadolinia-doped ceria (NiO/GDC) anode functional layers on low-and intermediate-temperature solid oxide fuel cell (SOFC) performance is investigated. NiO/YSZ and NiO/GDC thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni, Zr-Y, and Ce-Gd targets onto commercial NiO/YSZ substrates. Anode-supported SOFCs based on magnetron sputtered YSZ and GDC electrolytes (>4 µm) with and without the nanostructured anode layers are fabricated. A direct comparison of the YSZ-and GDC-based SOFCs in temperature range of 600-800 and 400-600°C is made. The performance of cells with the nanostructured anode layers significantly increases as compared to that of the cell without it, especially at lower temperatures. Increase of cells performance was achieved by reduction of the total area-specific resistance by 26-30%.
The paper presents the effect of irradiation of 321 steel substrates with a high-intense pulsed ion beam (HIPIB) on changes in functional properties of the surface layers and tribological characteristics of AlN coatings subsequently deposited above by the reactive magnetron sputtering method. The morphology of the modified surface layers, their microhardness and free surface energy levels are presented for different HIPIB energy densities. HIPIB irradiation of the substrates caused variations in the results of scratch tests combined with the acoustic emission signal processing. Their analysis has enabled concluding that the crack initiation threshold could be at least doubled for the studied coating/substrate system due to preliminary HIPIB irradiation. Finally, the obtained data were discussed, and future research directions were proposed.
A planar solid oxide fuel cell (SOFC) was fabricated using a commercial Ni/yttria-stabilized zirconia (YSZ) anode support, an YSZ/gadolinium-doped ceria (GDC) thin-film electrolyte, and a composite cathode of La0.6Sr0.4Co0.2Fe0.8O3/Gd0.1Ce0.9O1.95 (LSCF/GDC). A small, three-cell, SOFC stack is assembled using 10 cm × 10 cm single cells, metallic interconnects, and glass-based sealing. The stack performance was examined at various fuel flow rates of H2 + N2 and air at a fixed temperature of 750 °C. The three-cell stack with a crossflow design produced peak power density of 0.216 W/cm2 or about 39 W total power at 750 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.