Charcoal canker of oak is a common disease in the western regions of Iran, which has widely spread due to climate change and increasing drought in recent years. Biscogniauxia mediterranea and Obolarina persica are known as two agents of oak charcoal canker in Zagros forests causing the dieback of oak trees. The effects of charcoal disease agent pathogens on the growth and physiological response of two-year-old seedlings of Quercus brantii were evaluated under drought stress in greenhouse over a period of nine months. Survival was 21.7% lower in seedlings inoculated with B. mediterranea subjected to drought stress compared with control treatment. The length of lesions on stems was 68% more under charcoal pathogens in drought stressed compared with the length of lesions caused by charcoal pathogens only. On the other hand, stem lesion length caused by B. mediterranea was 25% greater than those caused by O. persica. Some morphophysiological characteristics were affected by charcoal pathogens alone and/or in combination with drought. Diameter, height and biomass decreased the most in seedlings inoculated with charcoal pathogens under drought stress. Pathogenic agents alone and in combination with drought stress reduced photosynthetic rates, stomatal conductance, transpiration, the maximum Rubisco activity (V cmax ), maximum photochemical efficiency of photosystem II (F v /F m ) and xylem water potential. In general, drought increased the aggressiveness of fungus and intensification of their destructive effects in Quercus brantii. Moreover, there was no significant difference between the effect of B. mediterranea and O. persica on the morphophysiological parameters studied. How to cite this article: Ghanbary E, Tabari Kouchaksaraei M, Mirabolfathy M, Modarres Sanavi SAM, Rahaie M. Growth and physiological responses of Quercus brantii seedlings inoculated with Biscogniauxia mediterranea and Obolarina persica under drought stress. For Path. 2017;47:e12353. https://doi.
The charcoal disease agents, Biscogniauxia mediterranea and Obolarina persica are two latent, ascomycetous oak pathogens in the Middle Eastern Zagros forests, where they have devastating effects, particularly during drought. Under greenhouse conditions, we investigated the effects of the two charcoal disease agents individually and in combination with drought on survival, growth, foliar gas-exchange, pigment content, oxidative stress and the antioxidant response of Quercus infectoria and Q. libani, two of the dominant tree species in this region. Commonly, the strongest negative effects emerged in the drought–pathogen interaction treatments. Q. infectoria showed less severe lesions, higher survival, more growth, and less leaf loss than Q. libani under combined biotic and abiotic stress. In both oak species, the combination of pathogen infection and drought resulted in more than 50% reduction in foliar gas-exchange parameters with partial recovery over time in Q. infectoria suggesting a superior defense system. Indeed, enhanced foliar anthocyanin, total soluble protein and glutathione concentrations imply an upregulation of the antioxidant defense system in Q. infectoria under stress while none of these parameters showed a significant treatment response in Q. libani. Consequently, Q. infectoria foliage showed no significant increase in superoxide, lower lipoxygenase activity, and less electrolyte leakage compared to the highly elevated levels seen in Q. libani indicating oxidative damage. Our findings indicate greater drought tolerance and pathogen resilience in Q. infectoria compared to Q. libani. Under future climate scenarios, we therefore expect changes in forest community structure driven by a decline in Q. libani and closely associated organisms.
The vast oak-dominated forests of the Zagros Mountains in southwestern Iran currently undergo large-scale dieback driven by a combination of drought and increasing incidence of charcoal disease caused by the fungal pathogens Biscogniauxia mediterranea and Obolarina persica. Here, we explore the interactive effects between drought and charcoal disease agents on the physiology and biochemistry of Quercus infectoria and Quercus libani seedlings. The combination of pathogen attack and water limitation hampered plant development, especially in Q. libani seedlings, negatively affecting growth, biomass production, photosynthetic efficiency, and leaf water potential. An increase in markers of oxidative damage together with the upregulation of the antioxidant defense revealed that drought stress and pathogen infection led to pro-oxidative conditions in both oak species, especially in Q. libani, where larger changes in malondialdehyde and hydrogen peroxide occurred. The upregulation of the antioxidant system was more prominent in Q. infectoria than in Q. libani, resulting in enhanced enzyme activity and accumulation of non-enzymatic antioxidants. Fungal infection stimulated the activity of chitinase, phenylalanine ammonia lyase and -1,3-glucanase in Q. infectoria leaves and this response became more pronounced under water shortage. Our study highlights that drought stress greatly intensifies the effects of the charcoal disease. Moreover, our findings imply superior stress resistance of Q. infectoria conferred by a highly efficient antioxidant system, strong osmotic adjustment (through proline), and increases in resistance enzymes and secondary metabolites (phenols and flavonoids). Future investigations should focus on adult trees in their natural habitat including interactions with soil factors and other pathogens like nematodes, bacteria and other fungi. Because the present research was conducted on oak seedlings, the findings can be considered by forest nursery managers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.