Cross docking play an important role in management of supply chains where items delivered to a warehouse by inbound trucks are directly sorted out, reorganized based on customer demands, routed and loaded into outbound trucks for delivery to customers without virtually keeping them at the warehouse. If any item is held in storage, it is usually for a short time, which is normally less than 24 hours. The proposed model of this paper considers a special case of cross docking where there is temporary storage and uses GRASP technique to solve the resulted problem for some realistic test problems. In our method, we first use some heuristics as initial solutions and then improve the final solution using GRASP method. The preliminary test results indicate that the GRASP method performs better than alternative solution strategies.
In this paper, we study no-wait flow shop problem where setup times depend on sequence of operations. The proposed problem considers sequence-independent removal times, release date with an additional assumption that there are some preliminary setup times. There are two objectives of weighted mean tardiness and makespan associated with the proposed model of this paper. We formulate the resulted problem as a mixed integer programming, where a two-phase fuzzy programming is implemented to solve the model. To examine the performance of the proposed model, we generate several sample data, randomly and compare the results with other methods. The preliminary results indicate that the proposed two-phase model of this paper performed relatively better than Zimmerman's single-phase fuzzy method.
In this paper, we present a new Imperialist Competitive Algorithm (ICA) to solve a bi-objective unrelated parallel machine scheduling problem where setup times are sequence dependent. The objectives include mean completion time of jobs and mean squares of deviations from machines workload from their averages. The performance of the proposed ICA (PICA) method is examined using some randomly generated data and they are compared with three alternative methods including particle swarm optimization (PSO), original version of imperialist competitive algorithm (OICA) and genetic algorithm (GA) in terms of the objective function values. The preliminary results indicate that the proposed study outperforms other alternative methods. In addition, while OICA performs the worst as alternative solution strategy, PSO and GA seem to perform better.
Cross docking is one of the most important issues in management of supply chains. In cross docking, different items delivered to a warehouse by inbound trucks are directly arranged and reorganized based on customer demands, routed and loaded into outbound trucks for delivery purposes to customers without virtually keeping them at the warehouse. If any item is kept in storage, it is normally for a short amount of time, say less than 24 hours. In this paper, we consider a special case of cross docking where there is temporary storage and implements genetic algorithm to solve the resulted problem for some realistic test problems. In our method, we first use some heuristics as initial solutions and then improve the final solution using genetic algorithm. The performance of the proposed model is compared with alternative solution strategy, the GRASP method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.