We study the problem of learning a Bayesian network (BN) of a set of variables when structural side information about the system is available. It is well known that learning the structure of a general BN is both computationally and statistically challenging. However, often in many applications, side information about the underlying structure can potentially reduce the learning complexity. In this paper, we develop a recursive constraint-based algorithm that efficiently incorporates such knowledge (i.e., side information) into the learning process. In particular, we study two types of structural side information about the underlying BN: (I) an upper bound on its clique number is known, or (II) it is diamond-free. We provide theoretical guarantees for the learning algorithms, including the worst-case number of tests required in each scenario. As a consequence of our work, we show that bounded treewidth BNs can be learned with polynomial complexity. Furthermore, we evaluate the performance and the scalability of our algorithms in both synthetic and real-world structures and show that they outperform the state-of-the-art structure learning algorithms.
One of the main approaches for causal structure learning is constraint-based methods. These methods are particularly valued as they are guaranteed to asymptotically find a structure which is statistically equivalent to the ground truth. However, they may require exponentially large number of conditional independence (CI) tests in the number of variables of the system. In this paper, we propose a novel recursive constraint-based method for causal structure learning. The key idea of the proposed approach is to recursively use Markov blanket information in order to identify a variable that can be removed from the set of variables without changing the statistical relations among the remaining variables. Once such a variable is found, its neighbors are identified, the removable variable is removed, and the Markov blanket information of the remaining variables is updated. Our proposed approach reduces the required number of conditional independence tests for structure learning compared to the state of the art. We also provide a lower bound on the number of CI tests required by any constraint-based method. Comparing this lower bound to our achievable bound demonstrates the efficiency of our approach. We evaluate and compare the performance of the proposed method on both synthetic and real world structures against the state of the art.
We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature recover a graph through learning a causal order (c-order). We advocate for a novel order called removable order (r-order) as they are advantageous over c-orders for structure learning. This is because r-orders are the minimizers of an appropriately defined optimization problem that could be either solved exactly (using a reinforcement learning approach) or approximately (using a hill-climbing search). Moreover, the r-orders (unlike c-orders) are invariant among all the graphs in a MEC and include c-orders as a subset. Given that set of r-orders is often significantly larger than the set of c-orders, it is easier for the optimization problem to find an r-order instead of a c-order. We evaluate the performance and the scalability of our proposed approaches on both real-world and randomly generated networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.