Microbial colonization on material surfaces is ubiquitous. Biofilms derived from surface-colonized microbes pose serious problems to the society from both an economical perspective and a health concern. Incorporation of antimicrobial nanocompounds within or on the surface of materials, or by coatings, to prevent microbial adhesion or kill the microorganisms after their attachment to biofilms, represents an important strategy in an increasingly challenging field. Over the last decade, many studies have been devoted to preparing meta-based nanomaterials that possess antibacterial, antiviral, and antifungal activities to combat pathogen-related diseases. Herein, an overview on the state-of-the-art antimicrobial nanosized metal-based compounds is provided, including metal and metal oxide nanoparticles as well as transition metal nanosheets. The antimicrobial mechanism of these nanostructures and their biomedical applications such as catheters, implants, medical delivery systems, tissue engineering, and dentistry are discussed. Their properties as well as potential caveats such as cytotoxicity, diminishing efficacy, and induction of antimicrobial resistance of materials incorporating these nanostructures are reviewed to provide a backdrop for future research.
Skin infections caused by bacteria, viruses and fungi are difficult to treat by conventional topical administration because of poor drug penetration across the stratum corneum. This results in low bioavailability of drugs to the infection site, as well as the lack of prolonged release. Emerging antimicrobial transdermal and ocular microneedle patches have become promising medical devices for the delivery of various antibacterial, antifungal, and antiviral therapeutics. In the present review, skin anatomy and its barriers along with skin infection are discussed. Potential strategies for designing antimicrobial microneedles and their targeted therapy are outlined. Finally, biosensing microneedle patches associated with personalized drug therapy and selective toxicity toward specific microbial species are discussed.
Excessive and unwarranted administration of antibiotics has invigorated the evolution of multidrug-resistant microbes. There is, therefore, an urgent need for advanced active compounds. Ionic liquids with short-lived ion-pair structures are highly tunable and have diverse applications. Apart from their unique physicochemical features, the newly discovered biological activities of ionic liquids have fascinated biochemists, microbiologists, and medical scientists. In particular, their antimicrobial properties have opened new vistas in overcoming the current challenges associated with combating antibioticresistant pathogens. Discussions regarding ionic liquid derivatives in monomeric and polymeric forms with antimicrobial activities are presented here. The antimicrobial mechanism of ionic liquids and parameters that affect their antimicrobial activities, such as chain length, cation/anion type, cation density, and polymerization, are considered. The potential applications of ionic liquids in the biomedical arena, including regenerative medicine, biosensing, and drug/biomolecule delivery, are presented to stimulate the scientific community to further improve the antimicrobial efficacy of ionic liquids.
The growing demand for patient-compliance therapies in recent years has led to the development of transdermal drug delivery, which possesses several advantages compared with conventional methods. Delivering protein through the skin by transdermal patches is extremely difficult due to the presence of the stratum corneum which restricts the application to lipophilic drugs with relatively low molecular weight. To overcome these limitations, microneedle (MN) patches, consisting of micro/miniature-sized needles, are a promising tool to perforate the stratum corneum and to release drugs and proteins into the dermis following a non-invasive route. This review investigates the fabrication methods, protein delivery, and translational considerations for the industrial scaling-up of polymeric MNs for dermal protein delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.