Background
Cardiovascular and other circulatory system diseases have been implicated in the severity of COVID-19 in adults. This study provides a super learner ensemble of models for predicting COVID-19 severity among these patients.
Method
The Cerner Real-World Database was used for this study. Data on adult patients (18 years or older) with cardiovascular and related circulatory diseases between 2017 and 2019 were retrieved and a total of 13 these conditions were identified. Among these patients, 33,042 admitted with positive diagnoses for COVID-19 between March 2020 and June 2020 (from 59 hospitals) were identified and selected for this study. A total of 14 statistical and machine learning models were developed and combined into a single more powerful super learning model for predicting COVID-19 severity on admission to the hospital.
Result
LASSO regression, a full extreme gradient boosting model with tree depth of 2, and a full logistic regression model were the most predictive with cross-validated AUROCs of 0.7964, 0.7961, and 0.7958 respectively. The resulting super learner ensemble model had a cross validated AUROC of 0.8006 (range: 0.7814, 0.8163). The unbiased AUROC of the super learner model on an independent test set was 0.8057 (95% CI: 0.7954, 0.8159).
Conclusion
Highly predictive models can be built to predict COVID-19 severity of patients with cardiovascular and other circulatory conditions. Super learning ensembles will improve individual and classical ensemble models significantly.
Objective: Emergency department (ED) return visits within 72 h may be a sign of poor quality of care and entail unnecessary use of healthcare resources. In this study, we compare the performance of two leading statistical and machine learning classification algorithms, and we use the best performing approach to identify novel risk factors of ED return visits. Methods: We analyzed 3.2 million ED encounters with at least one diagnosis under "injury, poisoning and certain other consequences of external causes" and "external causes of morbidity." These encounters included patients 18 years or older from across 128 emergency room facilities in the USA. For each encounter, we calculated the 72-h ED return status and retrieved 57 features from demographics, diagnoses, procedures, and medications administered during the process of administration of medical care. We implemented a mixed-effects model to assess the effects of the covariates while accounting for the hierarchical structure of the data. Additionally, we investigated the predictive accuracy of the extreme gradient boosting tree ensemble approach and compared the performance of the two methods. Results: The mixed-effects model indicates that certain blunt force and non-blunt trauma inflates the risk of a return visit. Notably, patients with trauma to the head and patients with burns and corrosions have elevated risks. This is in addition to 11 other classes of both blunt force and non-blunt force traumas. In addition, prior healthcare resource utilization, patients who have had one or more prior return visits within the last 6 months, prior ED visits, and the number of hospitalizations within the 6 months are associated with increased risk of returning to the ED after discharge. On the one hand, the area under the receiver characteristic curve (AUROC) of the mixed-effects model was 0.710 (0.707, 0.712). On the other hand, the gradient boosting tree ensemble had a lower AUROC of 0.698 CI (0.696, 0.700) on the independent test model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.