BackgroundSeveral researchers have tried to improve the results of gingival recession treatment techniques. One of the methods is to use growth factors The present study was undertaken to evaluate the effect of CAF (coronally advanced flap) + CTG (connective tissue graft) + PRGF (plasma rich in growth factors) in the treatment of Miller Class I buccal gingival recession.Material and MethodsTwenty-two teeth with Miller Class I gingival recession in 6 patients 26 ‒ 47 years of age were included in a split-mouth designed randomized controlled trial (RCT). In each patient, one side was treated with CAF + CTG + PRGF (test) and the other side was treated with CAF + CTG (control). The following parameters were measured before surgery and up to 6 months after surgery on the mid-buccal surface of the tooth: keratinized tissue width (KTW), clinical attachment level (CAL), probing depth (PD), vertical recession depth (VRD), recession depth (RD), gingival thickness (GT), root coverage in percentage (RC%) and the distance between the CEJ and mucogingival junction (MGJL). Data were analyzed with paired t-test and repeated measures ANOVA.ResultsAfter 6 months noticeable improvements were observed in both groups in all the variables measured except for PD; however, the differences between the two groups were not significant. RC% was 80 ± 25% and 67 ± 28% in the test and control groups, respectively, after 6 months.ConclusionsBoth CAF + CTG + PRGF and CAF + CTG treatment modalities resulted in favorable root coverage; however, the addition of PRGF added no measurable significant effect. Key words:Connective tissue graft, dental root coverage, gingival recession, growth factors, mucogingival surgery, periodontal plastic surgery.
Osseointegration of dental, craniofacial, and orthopedic implants is critical for their long-term success. Multifunctional surface treatment of implants was found to significantly improve cell adhesion and induce osteogenic differentiation of dental-derived stem cells in vitro. Moreover, local and sustained release of antibiotics via nanolayers from the surface of implants can present unparalleled therapeutic benefits in implant dentistry. Here, we present a layer-by-layer surface treatment of titanium implants capable of incorporating BMP-2–mimicking short peptides and gentamicin to improve their osseointegration and antibacterial features. Additionally, instead of conventional surface treatments, we employed polydopamine coating before layer-by-layer assembly to initiate the formation of the nanolayers on rough titanium surfaces. Cytocompatibility analysis demonstrated that modifying the titanium implant surface with layer-by-layer assembly did not have adverse effects on cellular viability. The implemented nanoscale coating provided sustained release of osteoinductive peptides with an antibacterial drug. The surface-functionalized implants showed successful osteogenic differentiation of periodontal ligament stem cells and antimicrobial activity in vitro and increased osseointegration in a rodent animal model 4 wk postsurgery as compared with untreated implants. Altogether, our in vitro and in vivo studies suggest that this approach can be extended to other dental and orthopedic implants since this surface functionalization showed improved osseointegration and an enhanced success rate.
No abstract
Background:The treatment of furcation area defects remained as a challenging issue in periodontal treatments. Regeneration treatment of furcation defects is the most discussed periodontal treatment. Although not completely hopeless in prognosis, the presence of the furcation involvement significantly increases the chance of tooth loss. The current research was conductedeto compare theeadditive effect of combined guided tissue regeneration (GTR) and platelet-rich growth factor (PRGF) on the treatment of furcation bony defects.Materials and Methods:A randomized, triple-blinded, split-mouth study was designed. It included patients with a moderate to severe chronic periodontitis with bilateral Grade II furcation involvement of first or second mandibular molars. Each side of mouth was randomly allocated for the treatment with either Bio-Gide American Society of Anesthesiologists GTR or a PRGF or PRGF by itself. Plaque index, gingival index, vertical clinical attachment level, vertical probing depth, recession depth (REC), horizontal probing depth, fornix to alveolar crest (FAC), fornix to base of defect (FBD), furcation vertical component and furcation horizontal component (FHC) were recorded. The current research was conducted to compare the additive effect of combined GTR and PRGF on treatment of furcation bony defects. Altman's nomogram, Kolmogorov–Smirnov test, Friedman test, general linear model, repeated measures, and paired t-test were used as statistical analysis in this research. P < 0.05 was considered statistically significant.Results:Eight patients were finally enrolled for this study. Overly, general and specific clinical and furcation parameters were improved except REC that was deteriorated insignificantly and FAC improved not significantly. Intergroup comparison revealed better improvement of FHC in GTR/PRGF group (P = 0.02).Conclusion:A significant improvement in the Grade II furcation defects treated with either GTR or PRGF/GTR was noticed. Further large-scale trials are needed to reveal differences of mentioned treatment in more details.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.