Propane dehydrogenation has been a promising propylene production process that can compensate for the increasing global demand for propylene. However, Pt-based catalysts with high stability at ≥600 °C have barely been reported because the catalysts typically result in short catalyst life owing to side reactions and coke formation. Herein, we report a new class of heterogeneous catalysts using high-entropy intermetallics (HEIs). Pt−Pt ensembles, which cause side reactions, are entirely diluted by the component inert metals in PtGe-type HEIs. The resultant HEI (PtCoCu) (GeGaSn)/Ca−SiO 2 exhibited an outstandingly high catalytic stability, even at 600 °C (k d −1 = τ = 4146 h = 173 d), and almost no deactivation of the catalyst was observed for 2 months for the first time. Detailed experimental studies and theoretical calculations demonstrated that the combination of the site-isolation and entropy effects upon multimetallization of PtGe drastically enhanced the desorption of propylene and the thermal stability, eventually suppressing the side reactions even at high reaction temperatures.
A six-month-old shiba dog with a one-month history of progressive motor dysfunction showed clinical signs of a cerebellar disorder, including ataxia, dysmetria and intention tremor of the head. Histopathological and ultrastructural studies revealed distended neurons packed with membranous cytoplasmic bodies throughout the central nervous system. The activities of lysosomal acid beta-galactosidase in its leucocytes and liver were less than 2 per cent of the control levels, and the compound accumulated in the brain was identified as GM1 ganglioside. A sibling which died immediately after birth was shown to have a beta-galactosidase deficiency in the brain and visceral organs. A family study revealed that the sire and dam of the probands were heterozygotes with approximately half of the normal level of beta-galactosidase activity, suggesting an autosomal recessive pattern of inheritance.
Vinyl acetate monomer (VAM), an important chemical intermediate in industry, is produced by the well-established commercial process of acetoxylation of ethylene with Pd–Au/SiO2 and a KOAc promoter. No paper has since decades defined the true effects of Au and KOAc, despite numerous attempts to clarify them. The role of subsurface carbon as a catalyst booster for enhanced catalytic performance in VAM synthesis was found by us for the first time. X-ray diffraction and X-ray absorption fine structure studies revealed that carbon atoms spontaneously doped into the Pd–Au alloy lattice while maintaining the alloy’s size, metallic state, and alloy composition. Additionally, during the process, the KOAc addition dramatically raised the equilibrium carbide fraction. Because of the high carbide fraction, KOAc/Pd0.8Au0.2/SiO2 had a 5.6-fold higher formation rate (89.0% selectivity) than Pd0.8Au0.2/SiO2 (69.2% selectivity) due to high carbide fraction. Surprisingly, kinetic and theoretical analyses showed that the coupling of acetate and ethylene, which is a rate-determining step, is effectively promoted by the synergistic contributions of Au (electronic/geometric effects) and interstitial carbon (electronic effect). Additionally, the synergy inhibits ethylene dehydrogenation, which ultimately slows the formation of CO2. The contentious debates about the roles of Au and KOAc in the acetoxylation of ethylene have been resolved thanks to experimental and theoretical insights into the roles of Pd–Au formation, Au/Pd ratio, and interstitial carbon atoms. These insights also open the door for the logical design of catalysts with desirable catalytic performance.
Propane dehydrogenation (PDH) has been a promising propylene production process that can compensate for the increasing global demand for propylene. However, Pt-based catalysts with high stability at ≥600°C have barely been reported because the catalysts typically result in short catalyst life owing to side reactions and coke formation. Herein, we report a new class of heterogeneous catalysts using high-entropy intermetallics (HEIs). Pt–Pt ensembles, which cause side reactions, are entirely diluted by the component inert metals in PtGe-type HEI; thereby, unfavorable side reactions are drastically inhibited. The resultant HEI: (PtCoCu)(GeGeSn)/Ca–SiO2 exhibited an outstandingly high catalytic stability, even at 600°C (kd−1 = τ = 4146 h = 173 d), and almost no deactivation of the catalyst was observed two months for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.