Weight-classified athletes need an energy intake plan to accomplish target weight reduction. They have to consider body composition and energy metabolism during rapid weight loss followed by rapid weight regain to achieve their energy intake plan. We investigated the effects of rapid weight loss, followed by weight regain, on body composition and energy expenditure. Ten weight-classified athletes were instructed to reduce their body weight by 5% in 7 days. Following the weight loss, they were asked to try to regain all of their lost weight with an ad libitum diet for 12 h. Food intake was recorded during the baseline, weight loss, and regain periods. Fat mass, total body water, and fat-free dry solids were estimated by underwater weighing and stable isotope dilution methods. A three-component model was calculated using Siri's equation. Basal and sleeping metabolic rates were measured by indirect calorimetry. Body composition and energy expenditure were measured before and after weight loss and after weight regain. Body weight, total body water, and fat-free dry solids were decreased after the weight loss period but recovered after weight regain (p < 0.05). Basal metabolic rate did not change throughout the study. Sleeping metabolic rate decreased significantly during weight loss but recovered after weight regain. Changes in total body water greatly affect body weight during rapid weight loss and regain. In addition, rapid weight loss and regain did not greatly affect the basal metabolic rate in weight-classified athletes.
Objective. To evaluate the effect of calorie restriction-induced weight loss with or without aerobic exercise on liver fat. Methods. Thirty-three adults with visceral adiposity were divided into calorie restriction (CR; n = 18) or CR and aerobic exercise (CR + Ex; n = 15) groups. Target energy intake was 25 kcal/kg of ideal body weight. The CR + Ex group had a targeted exercise time of 300 min/wk or more at lactate threshold intensity for 12 weeks. Results. Reductions in body weight (CR, −5.3 ± 0.8 kg; CR + Ex, −5.1 ± 0.7 kg), fat mass (CR, −4.9 ± 0.9 kg; CR + Ex, −4.4 ± 0.6 kg), and visceral fat (CR, −24 ± 5 cm2; CR + Ex, −37 ± 5 cm2) were not statistically different between groups. Liver fat decreased significantly in both groups, with no difference between groups. Change in maximal oxygen uptake was significantly greater in the CR + Ex group than in the CR group (CR, −0.7 ± 0.7 mL/kg/min; CR + Ex, 2.9 ± 1.0 mL/kg/min). Conclusion. Both CR and CR + Ex resulted in an improved reduction in liver fat; however, there was no additive effect of exercise training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.