Low physical activity has been identified as a major risk factor for the development of feline obesity and diabetes. This study aimed to evaluate the effects of increased meal frequency and dietary water content on voluntary physical activity in cats fed to maintain BW. Ten adult lean neutered male cats were used in 2 tests, both crossover studies composed of a 14-d adaptation period, followed by a 7-d measurement of physical activity from d 15 to d 22 using Actical activity collars. Cats were group housed for most of the day, except for times when they were individually housed in cages to access their diet under a 16:8 h light:dark cycle. In Exp. 1, the difference in voluntary physical activity among cats fed 1, 2, 4, or a random number of meals per day were tested in a 4 × 4 Latin square design in 4 individual rooms. In Exp. 2, the effect of increasing dietary water content on voluntary physical activity was tested in a crossover design including a 5-d phase for fecal and urine collection from d 22 to 27. Cats were randomly assigned to 2 rooms and fed a dry commercial diet with or without added water (70% hydrated) twice daily. Activity levels were expressed as "activity counts" per epoch (15 s). In Exp. 1, average daily activity level for 1-meal-fed cats was lower than 4-meal-fed (P = 0.004) and random-meal-fed (P = 0.02) cats, especially during the light period. The activity level of cats during the dark period was greater in 1-meal-fed cats compared with cats fed 2 meals (P = 0.008) or 4 meals (P = 0.007) daily. Two-hour food anticipatory activity (FAA) before scheduled meal times for 1-meal-fed cats was lower (P < 0.001) than for the multiple-meal-fed cats. In Exp. 2, average daily activity level of cats fed the 70% hydrated diet tended to be higher (P = 0.06) than cats fed the dry diet, especially during the dark period (P = 0.007). Two-hour FAA before the afternoon meal for cats fed the 70% hydrated diet was lower (P < 0.05) than for cats fed the dry diet. Cats fed the 70% hydrated diet had greater daily fecal (P = 0.008) and urinary (P = 0.001) outputs and lower (P < 0.001) urinary specific gravity compared to cats fed the dry diet. In conclusion, increased feeding frequency and dietary water content, without changing energy intake or dietary macronutrient composition, appear to promote physical activity, which may aid in weight management in cats.
BackgroundIn dogs, occurrence of lipid metabolism disorders such as obesity and diabetes mellitus has increased markedly in recent years. Hyperlipidemia has been regarded as a common characteristic for obese animals and hyperlipidemic condition may be associated with inflammation, oxidative stress and lipid composition changes. In this study, we investigated the changes in plasma cholesterol and triglyceride (TG) profiles and metabolite concentrations in 24 dogs (young group: 0-7 years old, n = 12, aged group: 8-13 years old, n = 12).ResultsPlasma adiponectin (ADN) concentrations were significantly lower in aged dogs than those in young dogs (mean ± SD, 17.2 ± 10.0 μg mL-1 vs 29.3 ± 12.5 μg mL-1, respectively; P <0.05). Although there were no significant differences statistically, aged dogs showed significantly higher plasma alpha1- acid glycoprotein (alpah1-AG) levels compared to those in young dogs. Plasma cholesterol lipoprotein and TG lipoprotein were divided into four fractions by biphasic agarose gel electrophoresis technique. The levels of the third TG-lipoprotein fraction from the positive pole (TG Fraction 3) were significantly higher in aged dogs than in young dogs (mean ± SD, 143.0 ± 109.3 mg dL-1 vs 55.2 ± 31.3 mg dL-1, respectively; P <0.05). On the correlation coefficient analysis by Peason’s method, moderate positive correlations were seen between the age and TG (r = 0.446, P = 0.029), TG Fraction 3 (r = 0.516, P = 0.010), malondialdehyde (r = 0.146, P = 0.043), alpha-1 AG (r = 0.448, P = 0.028) levels, respectively. Moderate negative correlations were seen the age and total cholesterol (TC) Fraction 2 (r = -0.446, P = 0.029), glucose (r = -0.637, P = 0.001), ADN (r = -0.408, P = 0.048), respectively.ConclusionsPresent data suggest biochemical characteristics of lipid metabolism disorder may be affected by aging in dogs.
To evaluate the effect of overfeeding on fatty acid distribution and metabolism, especially stearoyl-CoA desaturase-1 (SCD-1) indices, 8 cats in the experimental and control groups (4 per group) were evaluated in this study. The experiments involved feeding the experimental group cats twice their daily energy requirement with a commercial diet for 4 weeks. The control group was fed the estimated daily energy requirement with the same diet. Body weight, feline body mass index, body condition score, several zoometry measurements, and plasma metabolites/hepatic injury markers were measured in all the cats before and after the experiment. In addition, the fatty acid profiles in the liver and subcutaneous adipose tissue were measured after the experiment. After 4 weeks of overfeeding, the experimental group demonstrated significant increases in hepatic C18:1, plasma triglyceride, and nonesterified fatty acid (NEFA) concentrations and in alanine aminotransferase activity. Furthermore, hepatic SCD-1 indices were positively correlated with body weight, feline body mass index, body condition score, and plasma NEFA concentration, although subcutaneous adipose tissue did not demonstrate any increase in SCD-1 indices in this study. The increase in hepatic SCD-1 indices might be enhanced by the inflow of plasma NEFA into the liver, and NEFA toxicity might stimulate C18:1 synthesis by SCD-1.
Spay and neuter surgeries are useful in controlling pet populations, but increase obesity risk due to increased appetite, decreased metabolic rate and decreased energy expenditure. Dietary management may help limit post-spay weight gain, but few research studies have been conducted in cats. Therefore, the objective of this study was to evaluate the effects of a high-protein, high-fiber diet (HPHF) compared to a moderate-protein, moderate-fiber diet (MPMF) in female cats following spay surgery. Twenty healthy female cats (9.5±0.1 mo) were used. After a 4-wk baseline phase with cats fed MPMF to maintain body weight (BW), 16 cats were spayed and allotted to MPMF (n=8) or HPHF (n=8), with the remaining cats being sham-operated and fed MPMF (n=4). Cats were fed to maintain BW for 12 wk, then allowed to eat up to twice that amount for another 12 wk. Daily food intake, twice weekly BW and twice weekly body condition scores (BCS) were assessed. Back fat thickness (BF) using ultrasound, body composition using dual-energy X-ray absorptiometry (DEXA), feline body mass index (fBMI), body fat percentage estimates using zoometry measurements, serum metabolites, and voluntary physical activity levels were measured prior to spay (wk 0) and every 6 wk post-spay. A treatment*time effect was observed for food intake (g/d), but not caloric intake (kcal ME/d). Caloric intake was affected by time and treatment, being reduced over the first 12 wk and reduced at higher amounts in HPHF and MPMF cats vs. sham cats. BW, BCS and body fat percentage were affected over time. Treatment*time effects were observed for blood urea nitrogen, alkaline phosphatase, and fructosamine, while blood triglycerides, total cholesterol, creatinine, total protein, phosphorus, and bicarbonate were affected by time. Physical activity was reduced over time. Our results demonstrate that spay surgery affects food intake, BW, metabolism, and physical activity of cats. Dietary intervention in this study, however, led to minor changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.