KIF (kinesin superfamily) proteins are microtubule-dependent molecular motors that play important roles in intracellular transport and cell division. The extent to which KIFs are involved in various transporting phenomena, as well as their regulation mechanism, are unknown. The identification of 16 new KIFs in this report doubles the existing number of KIFs known in the mouse. Conserved nucleotide sequences in the motor domain were amplified by PCR using cDNAs of mouse nervous tissue, kidney, and small intestine as templates. The new KIFs were studied with respect to their expression patterns in different tissues, chromosomal location, and molecular evolution. Our results suggest that (
i
) there is no apparent tendency among related subclasses of KIFs of cosegregation in chromosomal mapping, and (
ii
) according to their tissue distribution patterns, KIFs can be divided into two classes–i.e., ubiquitous and specific tissue-dominant. Further characterization of KIFs may elucidate unknown fundamental phenomena underlying intracellular transport. Finally, we propose a straightforward nomenclature system for the members of the mouse kinesin superfamily.
Although brain lesions have been described in some cases with HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), little is known about the nature of brain lesion and its relation to the spinal cord lesion. In the present study, we performed histopathological analysis of the brain and the spinal cord of four autopsied cases with HAM/TSP to clarify the relationship between the brain and the spinal cord lesions. In two cases with active-chronic inflammation in the spinal cord, perivascular inflammatory infiltration was also seen in the brain, and the composition of cell subsets was similar both in the spinal cord and in the brain. No active inflammatory change was seen in the brain in two cases with inactive-chronic spinal cord lesions. Inflamed vessels were distributed mainly in the deep white matter and in the area between cerebral cortex and white matter of the brain. In the spinal cord inflamed vessels were mainly seen in the bilateral lateral and the ventral posterior columns. Parenchymal infiltration was diffused in the spinal cord but very sparse in the brain, suggesting the importance of parenchymal infiltration in the destruction of tissues. These results suggest that inflammatory changes occurred simultaneously in the spinal cord and in the brain, and that distribution of inflamed vessels closely correlated with the characteristics of vascular architecture of the brain and the spinal cord, which lead to a slow blood flow. This study may help promote a better understanding of the pathogenesis of HAM/TSP.
HTLV-I-infected cells play an important role in pathogenesis HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Our previous studies of quantitative polymerase chain reaction (PCR) and in situ PCR suggested that T cells infiltrating in the spinal cord lesion were infected with HTLV-I. To elucidate the localization of HTLV-I proviral DNA directly, we performed double staining using immunohistochemistry and PCR in situ hybridization (PCR-ISH). Fresh frozen sections of the spinal cord from four HAM patients taken at autopsy were first immunostained with antibodies to pan T cells (UCHL-1), macrophages (KP-1) and helper/inducer T cells (OPD4). Then PCR-ISH was carried out with specific primers and probe for the HTLV-I pX region. UCHL-1-positive cells were noted around perivascular areas and, to some extent, in the parenchyma. Of the UCHL-1-positive cells, 9.4% (case 1), 9.6% (case 2), 1.1% (case 3) and 6.7% (case 4) became positive in HTLV-I PCR-ISH. UCHL-1-negative cells were HTLV-I PCR-ISH negative and almost all KP-1-positive cells were HTLV-I negative. HTLV-I was localized to OPD4-positive cells in examined lesions of cases 2 and 4. These data are a direct demonstration of HTLV-I proviral DNA localizing to infiltrated T cells in HAM/TSP spinal cord lesions.
The objective of this study was to investigate the association of human T-lymphotropic virus-type I (HTLV-I) infection with sporadic inclusion body myositis in 11 patients from an endemic area in Japan. The clinical features were consistent with sporadic inclusion body myositis, and anti-HTLV-I antibodies were present in the sera of all patients. Their muscle biopsies showed the diagnostic features of inclusion body myositis, including endomysial T-cell infiltration, rimmed vacuoles, deposits of phosphorylated tau, and abnormal filaments in the nuclei and cytoplasm of the myofibers. The fibers expressed major histocompatibility complex class I antigens and were invaded by CD8 and CD4 cells. In a single human leukocyte antigen-A2-positive patient, in situ human leukocyte antigen-A*0201 / Tax11-19-pentamer staining showed pentamer-positive cells surrounding the muscle fibers. Double-immunogold silver staining and polymerase chain reaction in situ hybridization revealed that HTLV-I proviral DNA was localized on helper-inducer T cells, but not on muscle fibers. Human T-lymphotropic virus-type I proviral loads in peripheral blood mononuclear cells from each patient were similar to those in HTLV-I-associated myelopathy/tropical spastic paraparesis. This study suggests that HTLV-I infection may be one of the causes of sporadic inclusion body myositis, as has been reported in human immunodeficiency virus type-1 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.