Recent studies have revealed that platelet-derived growth factor (PDGF) plays a role in promoting progressive tumor growth in several organs; however, whether PDGF plays such a role in gastric carcinoma is undetermined. We examined whether inhibition of PDGF receptor (PDGF-R) tyrosine kinase signaling by imatinib affects tumor growth and metastasis in an orthotopic nude mouse model of human gastric carcinoma. TMK-1 human gastric carcinoma cells were injected into the gastric wall of nude mice. Groups of mice (n 5 10 each) received sterile water (control), low-dose imatinib (50 mg/kg/day), high-dose imatinib (200 mg/kg/day), cancer chemotherapeutic agent irinotecan (5 mg/kg/week), or imatinib (50 mg/kg/day or 200 mg/kg/day) and irinotecan (5 mg/kg/week) in combination for 28 days. Tumor growth and metastasis were assessed. Resected tumors were analyzed immunohistochemically. Carcinoma-associated fibroblasts, pericytes and lymphatic endothelial cells in stroma expressed high levels of PDGF-R; carcinoma cells did not. Treatment with imatinib alone did not inhibit tumor growth and metastasis; however, treatment with irinotecan alone or combined with imatinib significantly inhibited tumor growth. Only treatment with high-dose imatinib and irinotecan in combination inhibited lymph node and peritoneal metastases. Immunohistochemically, only imatinib alone or in combination with irinotecan was shown to significantly decrease the stromal reaction, microvessel area and pericyte coverage of tumor microvessels. These effects were marked with high-dose imatinib. In conclusion, administration of PDGF-R tyrosine kinase inhibitor in combination with irinotecan appears to impair the progressive growth of gastric carcinoma by blockade of PDGF-R signaling pathways in stromal cells.Recent studies in tumor biology have shown that tumor growth and metastasis are determined not only by cancer cells, but also by a variety of stromal cells. The stroma constitutes a large part of most solid tumors, and the cancer-stromal cell interaction contributes functionally to tumor growth and metastasis.
Bone marrow-derived mesenchymal stem cells (MSCs) are reported to contribute to formation of tumor-promoting stromal cells. We reported recently that, in an orthotopic nude mice model of colon cancer, MSCs traveled to tumor stroma, where they differentiated into carcinoma-associated fibroblast (CAF)-like cells. We also found that CAFs express platelet-derived growth factor receptor (PDGFR) at a high level and that imatinib therapy targeting PDGFR in CAFs inhibits growth and metastasis of human colon cancer. These findings led us to examine whether the tumor-promoting effect of MSCs is impaired by blockade of PDGFR signaling achieved with imatinib. Orthotopic transplantation and splenic injection of human MSCs along with KM12SM human colon cancer cells, in comparison with transplantation of KM12SM cells alone, resulted in significantly greater promotion of tumor growth and liver metastasis. The KM12SM 1 MSC xenograft enhanced cell proliferation and angiogenesis and inhibited tumor cell apoptosis. When tumor-bearing animals were treated with imatinib, there was no significant increase in primary tumor volume or total volume of liver metastases, despite the KM12SM1MSC xenograft, and survival in the mixed-cell group was prolonged by imatinib treatment. Moreover, the ability of MSCs to migrate to tumor stroma was impaired, and the number of MSCs surviving in the tumor microenvironment was significantly decreased. In in vitro experiments, treatment with imatinib inhibited migration of MSCs. Our data suggest that blockade of PDGF signaling pathways influences the interaction between bone marrow-derived MSCs and tumor cells in the tumor microenvironment and, hence, inhibits the progressive growth of colon cancer.
Recent study of murine fibrosarcoma has revealed that plateletderived growth factor (PDGF) plays a direct role in promoting lymphangiogenesis and metastatic spread to lymph nodes. Thus, we investigated the relation between PDGF and PDGF receptor (PDGF-R) expression and lymphatic metastasis in human gastric carcinoma. We examined PDGF-B and PDGF-Rb expression in four human gastric carcinoma cell lines (TMK-1, MKN-1, MKN-45, and KKLS) and in 38 surgical specimens of gastric carcinoma. PDGF-B and PDGF-Rb expression was examined by immunofluorescence in surgical specimens and in human gastric carcinoma cells (TMK-1) implanted orthotopically in nude mice. Groups of mice (n = 10, each) received saline (control) or PDGF-R tyrosine kinase inhibitor imatinib. PDGF-B and PDGF-Rb mRNA expression was significantly higher in patients with lymph node metastasis than in those without and was also significantly higher in diffuse-type carcinoma than in intestinal-type carcinoma. In surgical specimens, tumor cells expressed PDGF-B, but PDGF-Rb was expressed predominantly by stromal cells. Under culture conditions, expression of PDGF-B mRNA was found in all of the gastric cell lines, albeit at different levels. In orthotopic TMK-1 tumors, cancer cells expressed PDGF-B but not PDGF-Rb. PDGF-Rb was expressed by stromal cells, including lymphatic endothelial cells. Four weeks of treatment with imatinib significantly decreased the area of lymphatic vessels. Our data indicate that secretion of PDGF-B by gastric carcinoma cells and expression of PDGF-Rb by tumor-associated stromal cells are associated with lymphatic metastasis. Blockade of PDGF-R signaling pathways may inhibit lymph node metastasis of gastric
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.