Two new spin crossover complexes [FeL(py)(2)] (1) and [FeL(DMAP)(2)] (2) with L being a tetradentate N(2)O(2)(2-) coordinating Schiff-base-like ligand [([3,3']-[1,2-phenylenebis(iminomethylidyne)]bis(2,4-pentanedionato)(2-)-N,N',O(2),O(2)'], py = pyridine and DMAP = p-dimethylaminopyridine have been investigated using temperature-dependent susceptibility and thermogravimetric and photomagnetic measurements as well as Mössbauer spectroscopy and X-ray structure analysis. Both complexes show a cooperative spin transition with an approximately 9 K wide thermal hysteresis loop in the case of 2 (T(1/2) upward arrow = 183 K and T(1/2) downward arrow = 174 K) and an approximately 2 K wide thermal hysteresis loop in the case of the pyridine diadduct 1 (T(1/2) upward arrow = 191 K and T(1/2) downward arrow = 189 K). The spin transition was additionally followed by different temperature-scanning calorimetry and Mössbauer spectroscopy for 2, and a good agreement for the transition temperatures obtained with the different methods was found. Results from X-ray structure analysis indicate that the cooperative interactions are due to elastic interactions in both compounds. They are more pronounced in the case of 2 with very short intermolecular iron-iron distances of 7.2 A and several intense C-C contacts. The change of the spin state at the iron center is accompanied by a change of the O-Fe-O angle, the so-called bit of the equatorial ligand, from 108 degrees in the high-spin state to 90 degrees in the low-spin state. The reflectivity measurements of both compounds give at low temperature indication that at the sample surface the light-induced excited spin state trapping (LIESST) effect occurs. In bulk condition using a SQUID magnetometer the complex 2 displays some photomagnetic properties with an photoexcitation level of 60% and a T(LIESST) value of 53 K.
The magnetic properties and results from X-ray structure analysis for a new pair of iron(II) spin-crossover complexes [FeL1(meim) 2](meim) ( 1(meim)) and [Fe 2L2(meim) 4](meim) 4 ( 2(meim) 4), with L1 being a tetradentate N 2O 2 (2-) coordinating Schiff-base-like ligand [([3,3']-[1,2-phenylenebis(iminomethylidyne)]bis(2,4-pentane-dionato)(2-)N,N',O (2),O (2)'], L2 being an octadentate, dinucleating N 2O 2 (2-) coordinating Schiff-base-like ligand [3,3',3'',3''']-[1,2,4,5-phenylenetetra(iminomethylidyne)]tetra(2,4-pentanedionato)(2-) N, N', N'', N''', O (2), O (2) ', O (2) '', O (2) '''], and meim being N-methylimidazole, are discussed in this work. Crystalline samples of both complexes show a cooperative spin transition with an approximately 2-K-wide thermal hysteresis loop in the case of 1(meim) ( T 1/2 increase = 179 K and T 1/2 decrease = 177 K) and an approximately 21-K-wide thermal hysteresis loop in the case of dinuclear complex 2(meim) 4 ( T 1/2 increase= 199 K and T 1/2 decrease= 178 K). For a separately prepared powder sample of 2, a gradual spin transition with T 1/2 = 229 K is observed that was additionally followed by Mossbauer spectroscopy. The results from X-ray structure analysis give a deeper insight into the molecule packing in the crystal and, by this, help to explain the increase of cooperative interactions during the spin transition when going from the mononuclear to the dinuclear complex. Both compounds crystallize in the triclinic space group P1, and the X-ray structure was analyzed before and after the spin transition. The change of the spin state at the iron center is accompanied by a change of the O-Fe-O angle, the so-called bite of the equatorial ligand, from about 109 degrees in the high-spin state to 89 degrees in the low-spin state. The cooperative interactions responsible for the thermal hysteresis loop are due to elastic interactions between the complex molecules in both cases. However, due to the higher symmetry of the dinucleating ligand in 2(meim) 4, a 3D network of short contacts is formed, while for mononuclear complex 1(meim), a 2D layer of linked molecules is observed. The spin transition was additionally followed in solution using (1)H NMR spectroscopy for both complexes. In both cases, a gradual spin transition is observed, and the increase of cooperative interactions when going from the mononuclear to the dinuclear system is solely attributed to the extended network of intermolecular contacts.
The unusual grinding effects observed in the 1D spin crossover polymer [FeL(bipy)]n (1), with L being a tetradentate N2O22– coordinating Schiff base type ligand {(3,3′)‐[1,2‐phenylenebis(iminomethylidyne)]bis(2,4‐pentanedionato)(2–)‐N,N′,O2,O2′} and bipy = 4,4′‐bipyridine, are investigated using magnetic measurements, X‐ray powder diffraction and optical reflectivity studies. The observed behaviour can be explained when solvent effects are taken into account. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)
The synthesis and magnetic behavior of four new dinuclear iron(II) complexes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.