A series of defect-engineered metal-organic frameworks (DEMOFs) derived from parent microporous MOFs was obtained by systematic doping with defective linkers during synthesis, leading to the simultaneous and controllable modification of coordinatively unsaturated metal sites (CUS) and introduction of functionalized mesopores. These materials were investigated via temperature-dependent adsorption/desorption of CO monitored by FTIR spectroscopy under ultra-high-vacuum conditions. Accurate structural models for the generated point defects at CUS were deduced by matching experimental data with theoretical simulation. The results reveal multivariate diversity of electronic and steric properties at CUS, demonstrating the MOF defect structure modulation at two length scales in a single step to overcome restricted active site specificity and confined coordination space at CUS. Moreover, the DEMOFs exhibit promising modified physical properties, including band gap, magnetism, and porosity, with hierarchical micro/mesopore structures correlated with the nature and the degree of defective linker incorporation into the framework.
The 1H NMR spectra of a series of mono- and dinuclear pyridine complexes [FeL1(R1/R2)(py)2] and [Fe2L2(R1/R2)(py)4] have been investigated in a mixed toluene-d8/pyridine-d5 solution. The equatorial tetradentade Schiff base like ligands L1(R1/R2) and L2(R1/R2) with a N2O22- coordination sphere for each metal center have been obtained by condensation of a substituted malonodialdehyde (R1/R2 are Me/COOEt, Me/COMe, or OEt/COOEt) with o-phenylenediamine (L1(R1/R2)) or 1,2,4,5-tetraaminobenzene (L2(R1/R2)). The 1H NMR resonances were assigned by comparison of differently substituted complexes in combination with a line-width comparison. The 1H NMR shifts from 188 to 358 K show a strong influence of the spin state of the iron center. The behavior of the pure high-spin iron(II) complexes is close to ideal Curie behavior. Analysis of the resonance shifts of the spin-transition complexes can be used for determining the high-spin mole fraction of the complex in solution at different temperatures. Magnetic susceptibility measurements in solution using the Evans method were made for all six complexes. Significant differences between the spin-transition behavior of the complexes in solution of those in the solid state were found. However, the plots of microeff as a function of temperature obtained using the Evans method and those obtained by interpretation of the NMR shifts were virtually identical. The isotropic shifts of protons in the complexes proved to be suitable tools for following a spin transition in solution. Comparison of the microeff plots of the mono- and dinuclear complexes in solution reveals slight differences between the steepness of the curves that may be attributable to cooperative interactions between the metal centers in the case of the dinuclear complexes.
Going loopy: A new iron(II) spin‐crossover complex displays a 70 K wide thermal hysteresis loop, which can be explained by an intermolecular 2D network of hydrogen bonds. This is the first example of a spin‐crossover complex with wide hysteresis arising from a hydrogen‐bond network; it displays the widest hysteresis to date for a structurally characterized complex.
A spin-crossover coordination polymer [Fe(L1)(bipy)] (where L = a NO coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4'-bipyridine) was synthesized and exhibits a 48 K wide thermal hysteresis above room temperature (T↑ = 371 K and T↓ = 323 K) that is stable for several cycles. The spin transition was characterized using magnetic measurements, Mössbauer spectroscopy, and DSC measurements. T-dependent X-ray powder diffraction reveals a structural phase transition coupled with the spin transition phenomenon. The dimeric excerpt {(μ-bipy)[FeL1(MeOH)]}·2MeOH of the coordination polymer chain crystallizes in the triclinic space group P1̅ and reveals that the packing of the molecules in the crystal is dominated by hydrogen bonds. Investigation of the emission properties of the complexes with regard to temperature shows that the spin crossover can be tracked by monitoring the emission spectra, since the emission color changes from greenish to a yellow color upon the low spin-to-high spin transition.
Cupric oxide is one of the most important additives used (a) to catalyze decomposition reactions in gas generators to obtain cooler reaction gases, (b) as burning enhancer for ammonium perchlorate-based composite propellants, and (c) as coloring agent in pyrotechnics. In this context, the reaction of Cu(2+) ions in aqueous ammonia solution with bis(tetrazolyl)amine (H(2)bta) was investigated. Depending on the reaction conditions three complexes were obtained: Cu(bta)(NH(3))(2) (1), Cu(bta)(NH(3))(2).H(2)O (2), and (NH(4))(2)Cu(bta)(2).2.5H(2)O (3). The crystal structures of 1 and 2 are discussed with respect to the coordination mode of the dianion of N,N-bis(1(2)H-tetrazol-5-yl)-amine (bta), which mediates in the case of 1 and 2 weak superexchange interactions between the adjacent magnetic transition-metal Cu(II) cations. These antiferromagnetic interactions result from 1D copper chains over an hidden azide end-to-end bridge. Interestingly, the structural arrangement of 1 completely changes in the presence of crystal-bound water. Moreover, some physicochemical properties (e.g., heat of formation, friction, and impact sensitivity, DSC) of these complexes with respect to high-energetic materials are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.