1,5-Diamino-1H-tetrazole (2, DAT) can easily be protonated by reaction with strong mineral acids, yielding the poorly investigated 1,5-diaminotetrazolium nitrate (2a) and perchlorate (2b). A new synthesis for 2 is introduced that avoids lead azide as a hazardous byproduct. The reaction of 1,5-diamino-1H-tetrazole with iodomethane (7a) followed by the metathesis of the iodide (7a) with silver nitrate (7b), silver dinitramide (7c), or silver azide (7d) leads to a new family of heterocyclic-based salts. In all cases, stable salts were obtained and fully characterized by vibrational (IR, Raman) spectroscopy, multinuclear NMR spectroscopy, mass spectrometry, elemental analysis, X-ray structure determination, and initial safety testing (impact and friction sensitivity). Most of the salts exhibit good thermal stabilities, and both the perchlorate (2b) and the dinitramide (7c) have melting points well below 100 degrees C, yet high decomposition onsets, defining them as new (7c), highly energetic ionic liquids. Preliminary sensitivity testing of the crystalline compounds indicates rather low impact sensitivities for all compounds, the highest being that of the perchlorate (2b) and the dinitramide (7c) with a value of 7 J. In contrast, the friction sensitivities of the perchlorate (2b, 60 N) and the dinitramide (7c, 24 N) are relatively high. The enthalpies of combustion (Delta(c)H degrees ) of 7b-d were determined experimentally using oxygen bomb calorimetry: Delta(c)H degrees (7b) = -2456 cal g(-)(1), Delta(c)H degrees (7c) = -2135 cal g(-)(1), and Delta(c)H degrees (7d) = -3594 cal g(-)(1). The standard enthalpies of formation (Delta(f)H degrees ) of 7b-d were obtained on the basis of quantum chemical computations using the G2 (G3) method: Delta(f)H degrees (7b) = 41.7 (41.2) kcal mol(-)(1), Delta(f)H degrees (7c) = 92.1 (91.1) kcal mol(-)(1), and Delta(f)H degrees (7d) = 161.6 (161.5) kcal mol(-)(1). The detonation velocities (D) and detonation pressures (P) of 2b and 7b-d were calculated using the empirical equations of Kamlet and Jacobs: D(2b) = 8383 m s(-)(1), P(2b) = 32.2 GPa; D(7b) = 7682 m s(-)(1), P(7b) = 23.4 GPa; D(7c) = 8827 m s(-)(1), P(7c) = 33.6 GPa; and D(7d) = 7405 m s(-)(1), P(7d) = 20.8 GPa. For all compounds, a structure determination by single-crystal X-ray diffraction was performed. 2a and 2b crystallize in the monoclinic space groups C2/c and P2(1)/n, respectively. The salts of 7 crystallize in the orthorhombic space groups Pna2(1) (7a, 7d) and Fdd2 (7b). The hydrogen-bonded ring motifs are discussed in the formalism of graph-set analysis of hydrogen-bond patterns and compared in the case of 2a, 2b, and 7b.
Cupric oxide is one of the most important additives used (a) to catalyze decomposition reactions in gas generators to obtain cooler reaction gases, (b) as burning enhancer for ammonium perchlorate-based composite propellants, and (c) as coloring agent in pyrotechnics. In this context, the reaction of Cu(2+) ions in aqueous ammonia solution with bis(tetrazolyl)amine (H(2)bta) was investigated. Depending on the reaction conditions three complexes were obtained: Cu(bta)(NH(3))(2) (1), Cu(bta)(NH(3))(2).H(2)O (2), and (NH(4))(2)Cu(bta)(2).2.5H(2)O (3). The crystal structures of 1 and 2 are discussed with respect to the coordination mode of the dianion of N,N-bis(1(2)H-tetrazol-5-yl)-amine (bta), which mediates in the case of 1 and 2 weak superexchange interactions between the adjacent magnetic transition-metal Cu(II) cations. These antiferromagnetic interactions result from 1D copper chains over an hidden azide end-to-end bridge. Interestingly, the structural arrangement of 1 completely changes in the presence of crystal-bound water. Moreover, some physicochemical properties (e.g., heat of formation, friction, and impact sensitivity, DSC) of these complexes with respect to high-energetic materials are discussed.
The first tellurium compounds containing the extremely bulky tris(phenyldimethylsilyl)methyl (Tpsi) and 2,6-bis(2,4,6-triisopropylphenyl)phenyl (2,6-Trip(2)C(6)H(3)) moieties have been synthesized and isolated. Careful oxidation of the tellurolate TpsiTeLi (1) resulted in the formation of the crowded ditellane (TpsiTe)(2) (2), and iodination of 2 gave the alkanetellurenyl iodide TpsiTeI (3). In a similar fashion, the terphenyl-substituted ditellane (2,6-Trip(2)C(6)H(3)Te)(2) (9) and the arenetellurenyl iodide 2,6-Trip(2)C(6)H(3)TeI (10) were prepared. Reaction of the iodides TpsiTeI (3) and 2,6-Trip(2)C(6)H(3)TeI (10), as well as TripTeI, MesTeI (Trip = 2,4,6-triisopropylphenyl, Mes = 2,4,6-tri-tert-butylphenyl), and the donor-stabilized 2-Me(2)NCH(2)C(6)H(4)TeI, with AgN(3) resulted in the formation and isolation of the corresponding tellurenyl azides TpsiTeN(3) (4), TripTeN(3) (7), MesTeN(3) (8), 2,6-Trip(2)C(6)H(3)TeN(3) (11), and 2-Me(2)NCH(2)C(6)H(4)TeN(3) (12). Furthermore, the corresponding tris(ethyldimethylsilyl)methyl-containing (Tesi) tellurium compounds (TesiTe)(2), TesiTeI (5), and TesiTeN(3) (6) have been prepared but could not be isolated in pure form. The crystal structures of TpsiTeLi (1), (TpsiTe)(2) (2), TpsiTeN(3) (4), 2,6-Trip(2)C(6)H(3)TeI (10), 2,6-Trip(2)C(6)H(3)TeN(3) (11), and 2-Me(2)NCH(2)C(6)H(4)TeN(3) (12) have been determined by X-ray diffraction. Additionally, computational studies of the molecules for which experimental structural data were available were performed.
The labile tellurium cyanide species Te(CN)2 and Te(CN)4 have been prepared by treatment of tellurium(IV) tetrahalides with cyanide. Both are thermosensitive solids and, in addition, the tetracyanide was found to be pyrophoric. The crystal structure of Te(CN)2 has been determined. The structures of Te(CN)2, Te(CN)4, and Te(CN)6 have been calculated at various levels of theory. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.