Mass mortalities due to disease outbreaks have recently affected major taxa in the oceans. For closely monitored groups like corals and marine mammals, reports of the frequency of epidemics and the number of new diseases have increased recently. A dramatic global increase in the severity of coral bleaching in 1997-98 is coincident with high El Niño temperatures. Such climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases. Where documented, new diseases typically have emerged through host or range shifts of known pathogens. Both climate and human activities may have also accelerated global transport of species, bringing together pathogens and previously unexposed host populations. The oceans harbor enormous biodiversity by terrestrial terms (1), much of which is still poorly described taxonomically. Even less well known are the dynamics of intermittent, ephemeral, threshold phenomena such as disease outbreaks. Despite decades of intense study of the biological agents structuring natural communities, the ecological and evolutionary impact of diseases in the ocean remains unknown, even when these diseases affect economically and ecologically important species. The paucity of baseline and epidemiological information on normal disease levels in the ocean challenges our ability to assess the novelty of a recent spate of disease outbreaks and to determine the relative importance of increased pathogen transmission versus decreased host resistance in facilitating the outbreaks. Our objectives here are to review the prevalence of diseases of marine taxa to evaluate whether it can be concluded that there has been a recent increase. We also assess the contributing roles of human activity and global climate, and evaluate the role of the oceans as incubators and conveyors of human disease agents.
Infectious diseases are common in marine environments, but the effects of a changing climate on marine pathogens are not well understood. Here we review current knowledge about how the climate drives host-pathogen interactions and infectious disease outbreaks. Climate-related impacts on marine diseases are being documented in corals, shellfish, finfish, and humans; these impacts are less clearly linked for other organisms. Oceans and people are inextricably linked, and marine diseases can both directly and indirectly affect human health, livelihoods, and well-being. We recommend an adaptive management approach to better increase the resilience of ocean systems vulnerable to marine diseases in a changing climate. Land-based management methods of quarantining, culling, and vaccinating are not successful in the ocean; therefore, forecasting conditions that lead to outbreaks and designing tools/approaches to influence these conditions may be the best way to manage marine disease.
Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.
ABSTRACT:The mechanisms by which variability in sea ice cover and its effects on the demography of the Antarctic krill Euphausia superba cascade to other ecosystem components such as apex predators remain poorly understood at all spatial and temporal scales, yet these interactions are essential for understanding causal links between climate change, ecosystem response and resource monitoring and management in the Southern Ocean. To address some of these issues, we examined the longterm foraging responses of Adélie penguins Pygoscelis adeliae near Palmer Station, western Antarctic Peninsula, in relation to ice-induced changes in krill recruitment and availability. Our results suggest that (1) there is a direct, causal relationship between variability in ice cover, krill recruitment, prey availability and predator foraging ecology, (2) regional patterns and trends detected in this study are consistent with similar observations in areas as far north as South Georgia, and (3) largescale forcing associated with the Antarctic Circumpolar Wave may be governing ecological interactions between ice, krill and their predators in the western Antarctic Peninsula and Scotia Sea regions. Another implication of our analyses is that during the last 2 decades in particular, krill populations have been sustained by strong age classes that emerge episodically every 4 to 5 yr. This raises the possibility that cohort senescence has become an additional ecosystem stressor in an environment where ice conditions conducive to good krill recruitment are deteriorating due to climate warming. In exploring these interactions, our results suggest that at least 1 'senescence event' has already occurred in the western Antarctic Peninsula region, and it accounts for significant coherent decreases in krill abundance, predator populations and predator foraging and breeding performance. We propose that krill longevity should be incorporated into models that seek to identify and understand causal links between climate change, physical forcing and ecosystem response in the western Antarctic Peninsula region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.