Using a combined pharmacological and gene-deletion approach, we have delineated a novel mechanism of neurokinin-1 (NK-1) receptor-dependent hyperalgesia induced by proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor expressed on nociceptive primary afferent neurons. Injections into the paw of sub-inflammatory doses of PAR2 agonists in rats and mice induced a prolonged thermal and mechanical hyperalgesia and elevated spinal Fos protein expression. This hyperalgesia was markedly diminished or absent in mice lacking the NK-1 receptor, preprotachykinin-A or PAR2 genes, or in rats treated with a centrally acting cyclooxygenase inhibitor or treated by spinal cord injection of NK-1 antagonists. Here we identify a previously unrecognized nociceptive pathway with important therapeutic implications, and our results point to a direct role for proteinases and their receptors in pain transmission.
The large and functionally diverse group of G-protein-coupled receptors includes receptors for many different signalling molecules, including peptide and non-peptide hormones and neurotransmitters, chemokines, prostanoids and proteinases. Their principal function is to transmit information about the extracellular environment to the interior of the cell by interacting with the heterotrimeric G-proteins, and they thereby participate in many aspects of regulation. Cellular responses to agonists of these receptors are usually rapidly attenuated. Mechanisms of signal attenuation include removal of agonists from the extracellular fluid, receptor desensitization, endocytosis and downregulation. Agonists are removed by dilution, uptake by transporters and enzymic degradation. Receptor desensitization is mediated by receptor phosphorylation by G-protein receptor kinases and second-messenger kinases, interaction of phosphorylated receptors with arrestins and receptor uncoupling from
Proteinase-activated receptor-2 (PAR-2) is a G-protein-coupled receptor that is expressed by intestinal epithelial cells, which are episodically exposed to pancreatic trypsin in the intestinal lumen. Trypsin cleaves PAR-2 to expose a tethered ligand, which irreversibly activates the receptor. Thus, PAR-2 may desensitize and resensitize by novel mechanisms. We examined these mechanisms in kidney epithelial cells, stably expressing human PAR-2, and intestinal epithelial cells, which naturally express PAR-2. Trypsin stimulated a prompt increase in [Ca 2؉ ] i , due to mobilization of intracellular Ca
2؉, followed by a sustained plateau, due to influx of extracellular Ca 2؉ . Repeated application of trypsin caused marked desensitization of this response, which is due in part to (a) irreversible cleavage of the receptor by trypsin and (b) protein kinase C-mediated termination of signaling. Trypsin exposure resulted in internalization of PAR-2 into early endosomes and then lysosomes; but endocytosis was not the mechanism of rapid desensitization. Thus, activated PAR-2 is endocytosed and degraded. The Ca 2؉ response to trypsin resensitized by 60 -90 min. Brefeldin A, which disrupted Golgi stores of PAR-2, and cycloheximide, which inhibited protein synthesis, markedly attenuated resensitization. Thus, PAR-2-mediated Ca 2؉ mobilization desensitizes by irreversible receptor cleavage, protein kinase C-mediated termination of signaling, and PAR-2 targeting to lysosomes. It resensitizes by mobilization of large Golgi stores and synthesis of new receptors.Cellular responses to agonists of G-protein-coupled receptors are rapidly attenuated in the continuous presence of agonist and desensitize to repeated application of agonist (1, 2). With time between challenges, responses recover and cells resensitize. These are important processes, since they determine the ability of cells to respond to agonists; desensitization prevents the uncontrolled stimulation of cells, whereas resensitization allows cells to recover or maintain their responsiveness. Desensitization and resensitization are controlled at the level of the receptors and at more distal steps in the signaling pathway, but regulation of the receptors is of critical importance. The mechanisms may be distinct for different classes of G-proteincoupled receptors. Receptors for hormones and neurotransmitters, exemplified by the  2 AR 1 and the NK1-R, bind agonists reversibly and desensitize in a reversible manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.