Phosphoinositide 3-kinase (PI3K) is deregulated in a wide variety of human tumors and triggers activation of protein kinase B (PKB/Akt) and mammalian target of rapamycin (mTOR). Here we describe the preclinical characterization of compound 1 (PQR309, bimiralisib), a potent 4,6-dimorpholino-1,3,5-triazine-based pan-class I PI3K inhibitor, which targets mTOR kinase in a balanced fashion at higher concentrations. No off-target interactions were detected for 1 in a wide panel of protein kinase, enzyme, and receptor ligand assays. Moreover, 1 did not bind tubulin, which was observed for the structurally related 4 (BKM120, buparlisib). Compound 1 is orally available, crosses the blood-brain barrier, and displayed favorable pharmacokinetic parameters in mice, rats, and dogs. Compound 1 demonstrated efficiency in inhibiting proliferation in tumor cell lines and a rat xenograft model. This, together with the compound's safety profile, identifies 1 as a clinical candidate with a broad application range in oncology, including treatment of brain tumors or CNS metastasis. Compound 1 is currently in phase II clinical trials for advanced solid tumors and refractory lymphoma.
The mechanistic target of rapamycin (mTOR) plays a pivotal role in growth and tumor progression and is an attractive target for cancer treatment. ATP-competitive mTOR kinase inhibitors (TORKi) have the potential to overcome limitations of rapamycin derivatives in a wide range of malignancies. Herein, we exploit a conformational restriction approach to explore a novel chemical space for the generation of TORKi. Structure–activity relationship (SAR) studies led to the identification of compound 12b with a ∼450-fold selectivity for mTOR over class I PI3K isoforms. Pharmacokinetic studies in male Sprague Dawley rats highlighted a good exposure after oral dosing and a minimum brain penetration. CYP450 reactive phenotyping pointed out the high metabolic stability of 12b. These results identify the tricyclic pyrimido-pyrrolo-oxazine moiety as a novel scaffold for the development of highly selective mTOR inhibitors for cancer treatment.
Activity and selectivity assessment of new bi-aryl amide 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitors, prepared in a modular manner via Suzuki cross-coupling, are described. Several compounds inhibiting 11β-HSD1 at nanomolar concentrations were identified. Compounds 2b, 3e, 7b and 12e were shown to selectively inhibit 11β-HSD1 over 11β-HSD2, 17β-HSD1 and 17β-HSD2. These inhibitors also potently inhibited 11β-HSD1 activity in intact HEK-293 cells expressing the recombinant enzyme and in intact primary human keratinocytes expressing endogenous 11β-HSD1. Moreover, compounds 2b, 3e and 12e were tested for their activity in human skin biopsies. They were able to prevent, at least in part, both the cortisone- and the UV-mediated decreases in collagen content. Thus, inhibition of 11β-HSD1 by these compounds can be further investigated to delay or prevent UV-mediated skin damage and skin aging.
IntroductionWe report on the preparation and efficacy of 10‐hydroxystearic acid (HSA) that improves facial age spots and conspicuous pores.MethodsThe hydration of oleic acid into HSA was catalyzed by the oleate hydratase from Escherichia coli. Following treatment with HSA, collagen type I and type III was assessed in primary human dermal fibroblasts together with collagen type III, p53 protein levels and sunburn cells (SBC) after UVB irradiation (1 J cm−2) by immunohistochemistry on human ex vivo skin. UVB‐induced expression of matrix metalloprotease‐1 (MMP‐1) was determined from full thickness skin by RT‐qPCR. Modification of the fibroblast secretome by HSA was studied by mass‐spectrometry‐based proteomics. In a full‐face, double blind, vehicle‐controlled trial HSA was assessed for its effects on conspicuous facial pore size and degree of pigmentation of age spots in Caucasian women over an 8‐week period.ResultsHSA was obtained in enantiomeric pure, high yield (≥80%). Collagen type I and type III levels were dose‐dependently increased (96% and 244%; P < 0.01) in vitro and collagen type III in ex vivo skin by +57% (P < 0.01) by HSA. HSA also inhibited UVB‐induced MMP‐1 gene expression (83%; P < 0.01) and mitigated SBC induction (−34% vs. vehicle control) and reduced significantly UV‐induced p53 up‐regulation (−46% vs. vehicle control; P < 0.01) in irradiated skin. HSA modified the fibroblast secretome with significant increases in proteins associated with the WNT pathway that could reduce melanogenesis and proteins that could modify dermal fibroblast activity and keratinocyte differentiation to account for the alleviation of conspicuous pores. Docking studies in silico and EC50 determination in reporter gene assays (EC50 5.5 × 10−6 M) identified HSA as a peroxisomal proliferator activated receptor‐α (PPARα) agonist. Clinically, HSA showed a statistically significant decrease of surface and volume of skin pores (P < 0.05) after 8 weeks of application and age spots became significantly less pigmented than the surrounding skin (contrast, P < 0.05) after 4 weeks.ConclusionHSA acts as a PPARα agonist to reduce the signs of age spots and conspicuous pores by significantly modulating the expression of p53, SBC, MMP‐1 and collagen together with major changes in secreted proteins that modify keratinocyte, melanocyte and fibroblast cell behavior.
One of the first lines of cutaneous defense against photoaging is (a) the synthesis of melanin and (b) the initiation of an oxidative stress response to protect skin against the harmful effects of solar radiation. Safe and selective means to stimulate epidermal pigmentation associated with oxidative stress defense are; however, scarce. Activation of the melanocortin-1 receptor (MC1R) on epidermal melanocytes represents a key step in cutaneous pigmentation initiation and, additionally, it regulates cellular defense mechanisms like oxidative stress and DNA-repair. Thus, making the activation of MC1R an attractive strategy for modulating skin pigmentation and oxidative stress. In this context, we designed and synthesized pentapeptides that act as MC1R agonists. These peptides bound, with high potency, to MC1R and activated cAMP synthesis in CHO cells expressing human MC1R. Using one lead pentapeptide, we could show that this activation of MC1R was specific as testing the activation of other G-protein coupled receptors, including the MC-receptor family, was negative. In vitro efficacy on mouse melanoma cells showed similar potency as for the synthetic MC1R agonist alpha-melanocyte stimulating hormone (NDP-alpha-MSH). Moreover, we could reproduce this activity in human skin tissue culture. The lead pentapeptide was able to induce ex-vivo protein expression of key melanogenesis markers melanocyte inducing transcription factor (MITF), tyrosinase (TYR), and tyrosinase-related protein 1 (TYRP-1). Concerning oxidative stress response, we found that the pentapeptide enhanced the activation of Nrf2 after UVA-irradiation. Our results make this pentapeptide an ideal candidate as a skin pigmentation enhancer that mimics alpha-MSH and may also have anti-photoaging effects on the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.